Ahmed, Fatima N.; Ahmad, Rokiah Rozita; Din, Ummul Khair Salma; Noorani, Mohd Salmi Md Oscillation criteria of first order neutral delay differential equations with variable coefficients. (English) Zbl 1296.34151 Abstr. Appl. Anal. 2013, Article ID 489804, 5 p. (2013). Summary: Some new oscillation criteria are given for first order neutral delay differential equations with variable coefficients. Our results generalize and extend some of the well-known results in the literature. Some examples are considered to illustrate the main results. Cited in 5 Documents MSC: 34K11 Oscillation theory of functional-differential equations 34K40 Neutral functional-differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agwo, H. A., On the oscillation of delay differential equations with real coefficients, International Journal of Mathematics and Mathematical Sciences, 22, 3, 573-578 (1999) · Zbl 0970.34062 · doi:10.1155/S0161171299225732 [2] Driver, R. D., A mixed neutral system, Nonlinear Analysis: Theory, Methods & Applications, 8, 2, 155-158 (1984) · Zbl 0553.34042 · doi:10.1016/0362-546X(84)90066-X [3] Hale, J. K., Theory of Functional Differential Equations. Theory of Functional Differential Equations, Applied Mathematical Sciences, 3 (1977), New York, NY, USA: Springer, New York, NY, USA · Zbl 0352.34001 [4] Parhi, N.; Rath, R. N., On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations, Indian Academy of Sciences, 111, 3, 337-350 (2001) · Zbl 0995.34058 · doi:10.1007/BF02829600 [5] Agarwal, R. P.; Bohner, M.; Li, W. T., Nonoscillation and Oscillation: Theory for Functional Differential Equations. Nonoscillation and Oscillation: Theory for Functional Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, 267 (2004), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 1068.34002 · doi:10.1201/9780203025741 [6] Grammatikopoulos, M. K.; Ladas, G.; Sficas, Y. G., Oscillation and asymptotic behavior of neutral equations with variable coefficients, Radovi Matematicki, 2, 2, 279-303 (1986) · Zbl 0617.34067 [7] Tanaka, S., Oscillation of solutions of first-order neutral differential equations, Hiroshima Mathematical Journal, 32, 1, 79-85 (2002) · Zbl 1022.34064 [8] Zahariev, A. I.; Baĭnov, D. D., Oscillating properties of the solutions of a class of neutral type functional-differential equations, Bulletin of the Australian Mathematical Society, 22, 3, 365-372 (1980) · Zbl 0465.34042 · doi:10.1017/S0004972700006687 [9] Ladas, G.; Sficas, Y. G., Oscillations of neutral delay differential equations, Canadian Mathematical Bulletin, 29, 4, 438-445 (1986) · Zbl 0566.34054 · doi:10.4153/CMB-1986-069-2 [10] Ladas, G.; Schults, S. W., On oscillations of neutral equations with mixed arguments, Hiroshima Mathematical Journal, 19, 2, 409-429 (1989) · Zbl 0697.34060 [11] Sficas, Y. G.; Stavroulakis, I. P., Necessary and sufficient conditions for oscillations of neutral differential equations, Journal of Mathematical Analysis and Applications, 123, 2, 494-507 (1987) · Zbl 0631.34074 · doi:10.1016/0022-247X(87)90326-X [12] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Applicable Analysis, 22, 1, 1-19 (1986) · Zbl 0566.34057 · doi:10.1080/00036818608839602 [13] Zhang, B. G., Oscillation of first order neutral functional-differential equations, Journal of Mathematical Analysis and Applications, 139, 2, 311-318 (1989) · Zbl 0683.34037 · doi:10.1016/0022-247X(89)90110-8 [14] Gopalsamy, K.; Zhang, B. G., Oscillation and nonoscillation in first order neutral differential equations, Journal of Mathematical Analysis and Applications, 151, 1, 42-57 (1990) · Zbl 0725.34088 · doi:10.1016/0022-247X(90)90242-8 [15] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillations of first-order neutral delay differential equations, Journal of Mathematical Analysis and Applications, 120, 2, 510-520 (1986) · Zbl 0566.34056 · doi:10.1016/0022-247X(86)90172-1 [16] Saker, S. H.; Elabbasy, E. M., Oscillation of first order neutral delay differential equations, Kyungpook Mathematical Journal, 41, 2, 311-321 (2001) · Zbl 1014.34057 [17] Chuanxi, Q.; Ladas, G., Oscillations of neutral differential equations with variable coefficients, Applicable Analysis, 32, 3-4, 215-228 (1989) · Zbl 0682.34049 · doi:10.1080/00036818908839850 [18] Chuanxi, Q.; Ladas, G., Oscillations of first-order neutral equations with variable coefficients, Monatshefte für Mathematik, 109, 2, 103-111 (1990) · Zbl 0713.34071 · doi:10.1007/BF01302930 [19] Kubiaczyk, I.; Saker, S. H., Oscillation of solutions to neutral delay differential equations, Mathematica Slovaca, 52, 3, 343-359 (2002) · Zbl 1019.34067 [20] Karpuz, B.; Ocalan, O., Oscillation criteria for some classes of linear delay differential equations of first-order, Bulletin of the Institute of Mathematics, 3, 2, 293-314 (2008) · Zbl 1161.34034 [21] Győri, I.; Ladas, G., Oscillation Theory of Delay Differential Equations. Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs (1991), New York, NY, USA: Clarendon Press, New York, NY, USA · Zbl 0780.34048 [22] Erbe, L. H.; Kong, Q.; Zhang, B. G., Oscillation Theory for Functional-Differential Equations. Oscillation Theory for Functional-Differential Equations, Monographs and Textbooks in Pure and Applied Mathematics, 190 (1995), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0821.34067 [23] Yu, J. S.; Wang, Z. C.; Qian, C. X., Oscillation of neutral delay differential equations, Bulletin of the Australian Mathematical Society, 45, 2, 195-200 (1992) · Zbl 0729.34052 · doi:10.1017/S0004972700030057 [24] Choi, S. K.; Koo, N. J., Oscillation theory for delay and neutral differential equations, Trends in Mathematics, Information Center for Mathematical Sciences, 2, 170-176 (1999) [25] Ocalan, O., Existence of positive solutions for a neutral differential equation with positive and negative coefficients, Applied Mathematics Letters, 22, 1, 84-90 (2009) · Zbl 1163.34393 · doi:10.1016/j.aml.2008.02.009 [26] Candan, T.; Dahiya, R. S., Positive solutions of first-order neutral differential equations, Applied Mathematics Letters, 22, 8, 1266-1270 (2009) · Zbl 1173.34355 · doi:10.1016/j.aml.2008.02.019 [27] Kulenović, M. R. S.; Ladas, G.; Meimaridou, A., Necessary and sufficient condition for oscillations of neutral differential equations, Journal of the Australian Mathematical Society B, 28, 3, 362-375 (1987) · Zbl 0616.34064 · doi:10.1017/S0334270000005452 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.