×

An Hadamard-type inequality. (English) Zbl 1296.46052

Summary: We prove a Hadamard-type inequality for positive operators in a finite von Neumann algebra \(\mathcal M\) and for a trace-preserving positive map \(\phi :\mathcal M\to \mathcal M\).

MSC:

46L10 General theory of von Neumann algebras
47C15 Linear operators in \(C^*\)- or von Neumann algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arveson, W. B., Analyticity in operator algebras, Amer. J. Math., 89, 578-642 (1967) · Zbl 0183.42501
[2] Bhatia, R., Matrix Analysis, Grad. Texts in Math., vol. 169 (1997), Springer
[3] Bhatia, R.; Choi, M. D.; Davis, C., Comparing a matrix to its off-diagonal part, Oper. Theory Adv. Appl., 40, 151-163 (1989) · Zbl 0674.15018
[4] Bhatia, R.; Kittaneh, F., Norm inequalities for positive operators, Lett. Math. Phys., 43, 225-231 (1998) · Zbl 0912.47005
[5] Fack, T., Sur la notion de valeur charactéristique, J. Operator Theory, 7, 307-333 (1982) · Zbl 0493.46052
[6] Fack, T.; Kosaki, H., Generalized \(s\)-numbers of \(τ\)-measurable operators, Pacific J. Math., 123, 269-300 (1986) · Zbl 0617.46063
[7] Fuglede, B.; Kadison, R. V., Determinant theory in finite factors, Ann. of Math., 55, 520-530 (1952) · Zbl 0046.33604
[8] Junge, M.; Xu, Q., Noncommutative maximal ergodic theorems, J. Amer. Math. Soc., 20, 385-439 (2007) · Zbl 1116.46053
[9] Marsalli, M.; West, G., Noncommutative \(H^p\)-spaces, J. Operator Theory, 40, 339-355 (1997) · Zbl 1001.46041
[10] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030
[11] Paulsen, V., Completely Bounded Maps and Operator Algebras (2002), Cambridge Univ. Press · Zbl 1029.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.