zbMATH — the first resource for mathematics

Baumslag-Solitar group \(C^*\)-algebras from interval maps. (English) Zbl 1296.46056
Summary: We yield operators \(U\) and \(V\) on Hilbert spaces that are parameterized by the orbits of certain interval maps that exhibit chaotic behavior and obey the (deformed) Baumslag-Solitar relation \[ UV=e^{2\pi i \alpha} VU^n,\qquad \alpha\in \mathbb{R},\;n\in\mathbb{N}. \] We then prove that the scalar \(e^{2\pi i \alpha}\) can be removed whilst retaining the isomorphism class of the \(C^*\)-algebra generated by \(U\) and \(V\). Finally, we simultaneously unitarize \(U\) and \(V\) by gluing pairs of orbits of the underlying noninvertible dynamical system and investigate these unitary representations under distinct pairs of orbits.
46L55 Noncommutative dynamical systems
46L05 General theory of \(C^*\)-algebras
37B10 Symbolic dynamics
37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
Full Text: DOI Euclid
[1] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups , Bull. Amer. Math. Soc. 68 (1962), 199-201. · Zbl 0108.02702
[2] O. Bratteli and P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra , Mem. Amer. Math. Soc. 663 (1999), 1-89. · Zbl 0935.46057
[3] O. Bratteli, P.E.T. Jorgensen and V. Ostrovskyi, Representation theory and numerical AF-invariants. The representations and centralizers of certain states on \(\mathcal{O}_d\) , Mem. Amer. Math. Soc. 168 , no. 797, xviii+178 pp., 2004. · Zbl 1060.46048
[4] D.E. Dutkay, Low-pass filters and representations of the Baumslag Solitar group , Trans. Amer. Math. Soc. 358 (2006), 5271-5291. · Zbl 1171.42020
[5] D.E. Dutkay and P.E.T. Jorgensen, A duality approach to representations of Baumslag-Solitar groups , Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, 99-127, Contemp. Math., 449 , Amer. Math. Soc., Providence, RI, 2008. Preprint http://arxiv.org/abs/0704.2050v3. · Zbl 1156.22006
[6] C. Correia Ramos, N. Martins, P.R. Pinto and J. Sousa Ramos, Cuntz-Krieger algebras representations from orbits of interval maps , J. Math. Anal. Appl. 341 (2008), 825-833. · Zbl 1144.46050
[7] C. Correia Ramos, N. Martins and P.R. Pinto, Orbit representations and circle maps , In Birkhauser book series on Oper. Algebras, Oper. Theory and Applications Vol. 181 (2008), 417 - 427. · Zbl 1167.46037
[8] C. Correia Ramos, N. Martins and P.R. Pinto, On \(C^*\)-algebras from interval maps , Complex Anal. Oper. Theory 7 (2013), 221-235. · Zbl 1283.46036
[9] R. El Harti and P.R. Pinto, Stability results for \(C^*\)-unitarizable groups , Ann. Funct. Anal. 2 (2011), 1-10.
[10] N. Martins and J. Sousa Ramos, Cuntz-Krieger algebras arising from linear mod one transformations , Fields Inst. Commun. 31 (2002), 265-273. · Zbl 1046.46051
[11] D. Moldavanskii, On the isomorphisms of Baumslag-Solitar groups , (Russian Ukrainian summary) Ukrain. Mat. Zh. 43 (1991) 1684-1686; translation in Ukrainian Math. J. 43 (1992), 1569-1571.
[12] J. Milnor and W. Thurston, On Iterated maps of the interval , Dynamical systems (College Park, MD, 1986-87), Lect. Notes in Math, 1342 (1988), 465-563. · Zbl 0664.58015
[13] G.K. Pedersen, \(C^*\)-Algebras and their Automorphism Groups , Academic Press, London Mathematical Society Monographs, 14 , ix+416, 1979. · Zbl 0416.46043
[14] M.A. Rieffel, \(C^\ast\)-algebras associated with irrational rotations , Pacific J. Math. 93 (1981), 415-429. · Zbl 0499.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.