zbMATH — the first resource for mathematics

Normal bundles of convex bodies. (English) Zbl 1296.52003
Let \( C \subset {\mathbb E}^n \) be a convex body symmetric with respect to the origin, and \({\mathrm {bd}} C \) be its boundary. The author defines its normal bundle cone \( {\mathcal N}_C \subset {\mathbb E}^{n^2} \) as the positive hull of the set \( \{x \otimes n_C (x); \, x \in {\mathrm {bd}} C \}\), and its polar cone \( {\mathcal N}_C^* \) as \( \{ Y \in {\mathrm {lin}} \,{\mathcal N}_C : \, X \cdot Y \geq 0, \, X \in {\mathcal N}_C \} \). Here \({\mathrm {lin}} \) denotes the linear hull and \( n_C(x) \) is the exterior normal vector to \({\mathrm {bd}} C \) at \( x\).
The main results of the paper are devoted to:
Detailed description of general properties of the normal bundle cone of a convex set, in particular relations of the type \({\mathcal N}_{C + D} \subseteq {\mathcal N}_C + {\mathcal N}_D \) (Theorem 1);
Description of the space of normal bundle cones as the subset of all convex cones in \( {\mathbb E}^{n^2} \) (Theorem 2);
Estimates of dimensions of the normal bundle cones, in particular \( \frac{1}{2} d(d+1) \leq { \mathrm {dim}} {\mathcal N}_C \leq d^2 \). Studies of sharpness of these estimates (Theorem 3);
Polarity and transposition properties of the normal bundle cones, such as the relations of the type \({\mathcal N}_C \subseteq {\mathcal N}_C^* \) and analysis of their sharpness (Theorem 4).
Theorem 5. There is one-to-one correspondence between the family of all rank one faces of the cone \( {\mathcal N}_C \) and the family of all planar shadow boundaries of the body \( C \) with respect to parallel illumination.
The author formulates three natural conjectures concerning dimensions of the normal bundle cones; relations of isometries (and linear automorphisms) of \( {\mathcal N}_C \) to those of \( C \); and possibility of generalizations of the Theorem 5 to higher codimensions.

52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A15 Convex sets in \(3\) dimensions (including convex surfaces)
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
53A05 Surfaces in Euclidean and related spaces
Full Text: DOI
[1] Birkhoff, G., Orthogonality in linear metric spaces, Duke Math. J., 1, 169-172, (1935) · JFM 61.0634.01
[2] Blaschke, W., Räumliche variationsprobleme mit symmetrischer transversalitätsbedingung, Leipz. Ber., 68, 50-55, (1916) · JFM 46.0764.01
[3] Borcea, C. S., Symmetries of the positive semidefinite cone, Forum Math., (2013), in press
[4] Danzer, L.; Laugwitz, D.; Lenz, H., Über das Löwnersche ellipsoid und sein analogon unter den einem eikörper einbeschriebenen ellipsoiden, Arch. Math. (Basel), 8, 214-219, (1957) · Zbl 0078.35803
[5] Encyclopedia of mathematics, (1994), Kluwer Dordrecht
[6] Gruber, P. M., Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann., 229, 259-266, (1977) · Zbl 0342.52009
[7] Gruber, P. M., Radonʼs contributions to convexity, (J. Radon, Ges. Abh. I, (1987), Birkhäuser Basel), 331-342
[8] Gruber, P. M., Convex and discrete geometry, Grundlehren Math. Wiss., vol. 336, (2007), Springer Berlin, Heidelberg, New York · Zbl 1139.52001
[9] Gruber, P. M., Application of an idea of voronoĭ to John type problems, Adv. Math., 218, 309-351, (2008) · Zbl 1144.52003
[10] Gruber, P. M., Geometry of the cone of positive quadratic forms, Forum Math., 21, 147-166, (2009) · Zbl 1217.11039
[11] Gruber, P. M., John and Loewner ellipsoids, Discrete Comput. Geom., 46, 776-788, (2011) · Zbl 1241.52002
[12] Gruber, P. M., Lattice packing and covering of convex bodies, Proc. Steklov Inst. Math., 275, 229-238, (2011) · Zbl 1301.52033
[13] Gruber, P. M., Application of an idea of voronoĭ to lattice zeta functions, Proc. Steklov Inst. Math., 212, 103-124, (2012) · Zbl 1297.11113
[14] Gruber, P. M., Application of an idea of voronoĭ, a report, (Geometry - Intuitive, Discrete, Convex, Math. Surveys Monogr., vol. 24, (2013), Bolyai Math. Soc.), in press · Zbl 1317.15023
[15] Gruber, P. M., Application of an idea of voronoĭ to lattice packing, Ann. Mat. Pura Appl., (2013), in press
[16] Gruber, P. M.; Lekkerkerker, C. G., Geometry of numbers, (1987), North-Holland Amsterdam · Zbl 0611.10017
[17] Gruber, P. M.; Schuster, F. E., An arithmetic proof of johnʼs ellipsoid theorem, Arch. Math. (Basel), 85, 82-88, (2005) · Zbl 1086.52002
[18] James, R. C., Inner product in normed linear spaces, Bull. Amer. Math. Soc., 53, 559-566, (1947) · Zbl 0041.43701
[19] James, R. C., Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61, 265-292, (1947) · Zbl 0037.08001
[20] Klee, V., Some new results on smoothness and rotundity in normed linear spaces, Math. Ann., 139, 51-63, (1959) · Zbl 0092.11602
[21] Martinet, J., Perfect lattices in Euclidean spaces, Grundlehren Math. Wiss., vol. 325, (2003), Springer Berlin, Heidelberg, New York · Zbl 1017.11031
[22] Radon, J., Über eine besondere art ebener konvexer kurven, Leipz. Ber., 68, 123-128, (1916) · JFM 46.1114.08
[23] Ryshkov, S. S., On the theory of the cone of positivity and the theory of the perfect polyhedra \(\Pi(n)\) and \(\mu_n(m)\), Chebyshevskii Sb., 3, 84-96, (2002) · Zbl 1108.11049
[24] Schneider, R., Convex bodies: the brunn-Minkowski theory, (1993), Cambridge Univ. Press Cambridge · Zbl 0798.52001
[25] Schürmann, A., Computational geometry of positive definite quadratic forms, (2009), AMS Providence, RI · Zbl 1185.52016
[26] Thompson, A. C., Minkowski geometry, (1996), Cambridge Univ. Press Cambridge · Zbl 0868.52001
[27] Tuan, H. D.; Trang, T. T.N.; Hieu, D. T., Positive definite preserving linear transformations on symmetric matrix spaces, (2010), preprint
[28] Voronoĭ, G. F., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. première mémoire: sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 133, 97-178, (1908), Coll. Works II, pp. 171-238 · JFM 38.0261.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.