×

zbMATH — the first resource for mathematics

Coincidence point theorems for multivalued \(f\)-weak contraction mappings and applications. (English) Zbl 1296.54048
The existence of coincidence points and common fixed points for multivalued \(f\)-weak contraction mappings is proved with the assumption of closed values only. As an application, related common fixed point, invariant approximation, random coincidence point and random invariant approximation results are also obtained. These results provide extensions as well as substantial improvements of several well-known results in the existing literature.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
54C60 Set-valued maps in general topology
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
47H40 Random nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Al-Thagafi M.A.: Common fixed points and best approximation. J. Approx. Theory 85, 318–320 (1996) · Zbl 0858.41022 · doi:10.1006/jath.1996.0045
[2] Al-Thagafi M.A., Shahzad N.: Noncommuting self maps and invariant approximations. Nonlinear Anal. 64, 2778–2786 (2006) · Zbl 1108.41025 · doi:10.1016/j.na.2005.09.015
[3] Al-Thagafi, M.A., Shahzad, N.: Coincidence points, generalized I-nonexpansive multimaps and applications. Nonlinear Anal. (in press) · Zbl 1125.47038
[4] Beg I., Khan A.R., Hussain N.: Approximation of *-nonexpansive random multivalued operators on Banach spaces. J. Austral. Math. Soc 76, 51–66 (2004) · Zbl 1072.47055 · doi:10.1017/S1446788700008697
[5] Beg I., Abbas M.: Iterative procedures for solution of random equations in Banach spaces. J. Math. Anal. Appl. 315, 181–201 (2006) · Zbl 1093.47057 · doi:10.1016/j.jmaa.2005.05.073
[6] Berinde V.: Approximating fixed points of weak contraction using the Picard iteration. Nonlinear Anal. Forum. 9, 43–53 (2004) · Zbl 1078.47042
[7] Berinde, M., Berinde, V.: On general class of multivalued weakly Picard mappings. J. Math. Anal. Appl. (2011) (in press) · Zbl 1265.39038
[8] Fierro, R., Martnez, C., Morales, C.H.: Fixed point theorems for random lower semi-continuous mappings. Fixed Point Theory Appl. 2009 (2009). doi: 10.1155/2009/584178 , article ID 584178
[9] Himmelberg C.J.: Measurable relations. Fund. Math. 87, 53–72 (1975) · Zbl 0296.28003
[10] Hussain N.: Coincidence points for multivalued maps defined on non-starshaped domain. Demo. Math. Demo. Math. 39, 579–584 (2006) · Zbl 1118.47044
[11] Hussain N., Jungck G.: Common fixed point and invariant approximation results for noncommuting generalized (f, g) -nonexpansive maps. J. Math. Anal. Appl. 321, 851–861 (2006) · Zbl 1106.47048 · doi:10.1016/j.jmaa.2005.08.045
[12] Hussain N., O’Regan D., Agarwal R.P.: Common fixed point and invariant approximation results on non-starshaped domains. Georgian Math. J. 12, 659–669 (2005) · Zbl 1102.47053
[13] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67, 261–273 (1979) · Zbl 0407.60069 · doi:10.1016/0022-247X(79)90023-4
[14] Jungck G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976) · Zbl 0321.54025 · doi:10.2307/2318216
[15] Jungck G.: Common fixed points for commuting and compatible maps on compacta. Proc. Am. Soc. 103, 977–983 (1988) · Zbl 0661.54043 · doi:10.1090/S0002-9939-1988-0947693-2
[16] Jungck G.: Coincidence and fixed points for compatible and relatively nonexpansive maps. Int. J. Math. Math. Sci. 16, 95–100 (1993) · Zbl 0807.47041 · doi:10.1155/S0161171293000110
[17] Jungck G., Rhoades B.E.: Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29, 227–238 (1998) · Zbl 0904.54034
[18] Jungck G., Sessa S.: Fixed point theorems in best approximation theory. Math. Jap. 42, 249–252 (1995) · Zbl 0834.54026
[19] Kamran T.: Coincidence and fixed points for hybrid strict contractions. J. Math. Anal. Appl. 299, 235–241 (2004) · Zbl 1064.54055 · doi:10.1016/j.jmaa.2004.06.047
[20] Kamran T.: Multivalued f-weakly Picard mappings. Nonlinear Anal. 67, 2289–2296 (2007) · Zbl 1128.54024 · doi:10.1016/j.na.2006.09.010
[21] Kaneko H., Sessa S.: Fixed point theorems for compatible multivalued and single valued mappings. Int. J. Math. Math. Sci. 12, 257–267 (1989) · Zbl 0671.54023 · doi:10.1155/S0161171289000293
[22] Khan, A.R., Akbar, F., Sultana, N., Hussain, N.: Coincidence and invariant approximation theorems for generalized f-nonexpansive multivalued mappings. Int. J. Math. Math. Sci. (2006) · Zbl 1124.47035
[23] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 13, 397–403 (1965) · Zbl 0152.21403
[24] Latif A., Bano A.: A result on invariant approximation. Tamkang J. Math. 33, 89–92 (2002) · Zbl 1030.47035
[25] Latif A., Tweddle I.: On multivalued nonexpansive maps. Demo. Math. 32, 565–574 (1999) · Zbl 0956.47022
[26] Nadlar S.B. Jr: Multivalued contraction mappings. Pacific J. Math. 30, 475–488 (1969) · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475
[27] Rhaodes B.E.: On multivalued f-nonexpansive maps. Fixed Point Theory Appl. 2, 89–92 (2001)
[28] Sahab S.A., Khan M.S., Sessa S.: A result in best approximation theory. J. Approx. Theory 55, 349–351 (1988) · Zbl 0676.41031 · doi:10.1016/0021-9045(88)90101-3
[29] Shahzad N.: Invariant approximation and R-subweakly commuting maps. J. Math. Anal. Appl. 257, 39–45 (2001) · Zbl 0989.47047 · doi:10.1006/jmaa.2000.7274
[30] Shahzad N.: Some general random coincidence point theorems. N. Z. J. Math. 33, 95–103 (2004) · Zbl 1083.47047
[31] Shahzad N., Hussain N.: Deterministic and random coincidence point results for f-nonexpansive maps. J. Math. Anal. Appl. 323, 1038–1046 (2006) · Zbl 1107.47042 · doi:10.1016/j.jmaa.2005.10.057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.