×

zbMATH — the first resource for mathematics

Two-step spline estimating equations for generalized additive partially linear models with large cluster sizes. (English) Zbl 1296.62093
Summary: We propose a two-step estimating procedure for generalized additive partially linear models with clustered data using estimating equations. Our proposed method applies to the case that the number of observations per cluster is allowed to increase with the number of independent subjects. We establish oracle properties for the two-step estimator of each function component such that it performs as well as the univariate function estimator by assuming that the parametric vector and all other function components are known. Asymptotic distributions and consistency properties of the estimators are obtained. Finite-sample experiments with both simulated continuous and binary response variables confirm the asymptotic results. We illustrate the methods with an application to a U.S. unemployment data set.

MSC:
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes : Estimation and Prediction , 2nd ed. Lecture Notes in Statistics 110 . Springer, New York. · Zbl 0902.62099
[2] Bun, M. J. G. and Carree, M. A. (2005). Bias-corrected estimation in dynamic panel data models. J. Bus. Econom. Statist. 23 200-210. · Zbl 1255.62340
[3] de Boor, C. (2001). A Practical Guide to Splines , revised ed. Applied Mathematical Sciences 27 . Springer, New York. · Zbl 0987.65015
[4] DeVore, R. A. and Lorentz, G. G. (1993). Constructive Approximation. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 303 . Springer, Berlin. · Zbl 0797.41016
[5] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Monographs on Statistics and Applied Probability 43 . Chapman & Hall, London. · Zbl 0747.62061
[6] He, X., Fung, W. K. and Zhu, Z. (2005). Robust estimation in generalized partial linear models for clustered data. J. Amer. Statist. Assoc. 100 1176-1184. · Zbl 1117.62351
[7] He, X. and Shi, P. (1996). Bivariate tensor-product \(B\)-splines in a partly linear model. J. Multivariate Anal. 58 162-181. · Zbl 0865.62027
[8] Heckman, N. E. (1986). Spline smoothing in a partly linear model. J. R. Stat. Soc. Ser. B Stat. Methodol. 48 244-248. · Zbl 0623.62030
[9] Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L.-P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika 85 809-822. · Zbl 0921.62045
[10] Horowitz, J., Klemelä, J. and Mammen, E. (2006). Optimal estimation in additive regression models. Bernoulli 12 271-298. · Zbl 1098.62043
[11] Horowitz, J. L. and Lee, S. (2005). Nonparametric estimation of an additive quantile regression model. J. Amer. Statist. Assoc. 100 1238-1249. · Zbl 1117.62355
[12] Horowitz, J. L. and Mammen, E. (2004). Nonparametric estimation of an additive model with a link function. Ann. Statist. 32 2412-2443. · Zbl 1069.62035
[13] Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. Ann. Statist. 31 1600-1635. · Zbl 1042.62035
[14] Huang, J. Z., Zhang, L. and Zhou, L. (2007). Efficient estimation in marginal partially linear models for longitudinal/clustered data using splines. Scand. J. Stat. 34 451-477. · Zbl 1150.62020
[15] Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22. · Zbl 0595.62110
[16] Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data when the predictor is measured without/with error. J. Amer. Statist. Assoc. 95 520-534. · Zbl 0995.62043
[17] Lin, X. and Carroll, R. J. (2001). Semiparametric regression for clustered data. Biometrika 88 1179-1185. · Zbl 0994.62031
[18] Lin, X., Wang, N., Welsh, A. H. and Carroll, R. J. (2004). Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data. Biometrika 91 177-193. · Zbl 1132.62321
[19] Linton, O. B. (2000). Efficient estimation of generalized additive nonparametric regression models. Econometric Theory 16 502-523. · Zbl 0963.62037
[20] Liu, R. and Yang, L. (2010). Spline-backfitted kernel smoothing of additive coefficient model. Econometric Theory 26 29-59. · Zbl 1186.62134
[21] Ma, S., Song, Q. and Wang, L. (2013). Simultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data. Bernoulli 19 252-274. · Zbl 1259.62021
[22] Ma, S. and Yang, L. (2011). Spline-backfitted kernel smoothing of partially linear additive model. J. Statist. Plann. Inference 141 204-219. · Zbl 1197.62130
[23] Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443-1490. · Zbl 0986.62028
[24] Munnell, A. H. (1990). How does public infrastructure affect regional economic performance. New England Econ. Rev. Sep. 11-33.
[25] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Ann. Statist. 25 186-211. · Zbl 0869.62026
[26] Song, Q. and Yang, L. (2010). Oracally efficient spline smoothing of nonlinear additive autoregression models with simultaneous confidence band. J. Multivariate Anal. 101 2008-2025. · Zbl 1203.62161
[27] Walterskirchen, E. (1999). The relationship between growth, employment and unemployment in the EU. European economists for an alternative economic policy, Workshop in Barcelona.
[28] Wang, J. and Yang, L. (2009). Polynomial spline confidence bands for regression curves. Statist. Sinica 19 325-342. · Zbl 1225.62055
[29] Wang, L. and Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive autoregression model. Ann. Statist. 35 2474-2503. · Zbl 1129.62038
[30] Wang, N., Carroll, R. J. and Lin, X. (2005). Efficient semiparametric marginal estimation for longitudinal/clustered data. J. Amer. Statist. Assoc. 100 147-157. · Zbl 1117.62440
[31] Welsh, A. H., Lin, X. and Carroll, R. J. (2002). Marginal longitudinal nonparametric regression: Locality and efficiency of spline and kernel methods. J. Amer. Statist. Assoc. 97 482-493. · Zbl 1073.62529
[32] Wild, C. J. and Yee, T. W. (1996). Additive extensions to generalized estimating equation methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 58 711-725. · Zbl 0860.62035
[33] Xie, M. and Yang, Y. (2003). Asymptotics for generalized estimating equations with large cluster sizes. Ann. Statist. 31 310-347. · Zbl 1018.62019
[34] Xue, L. and Yang, L. (2006). Additive coefficient modeling via polynomial spline. Statist. Sinica 16 1423-1446. · Zbl 1109.62030
[35] Zhou, S., Shen, X. and Wolfe, D. A. (1998). Local asymptotics for regression splines and confidence regions. Ann. Statist. 26 1760-1782. · Zbl 0929.62052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.