×

Multiresolution molecular mechanics: statics. (English) Zbl 1296.74006

Summary: This paper presents a new concurrent atomistic-continuum coupling method called the multiresolution molecular statics (MMS). By introducing a novel energy sampling framework, MMS aims at accurately and efficiently approximating the atomic energy of the system at different resolutions without the cumbersome interfacial treatment in existing methods. The key features of the MMS method are: (1) consistency with the atomistics framework, (2) consistency with the order of shape functions introduced, and (3) flexibility in energy approximation with respect to accuracy and efficiency. Under the energy sampling framework, several sampling schemes have been devised and tested for interface compatibility, and compared to existing methods. Sources of errors in the different approximations have been identified. The proposed MMS method demonstrates very good accuracy in solving crack propagation and surface relaxation problems when compared to full molecular statics.

MSC:

74A25 Molecular, statistical, and kinetic theories in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, F. F.; Walkup, R.; Gao, H.; Duchaineau, M.; Diaz De La Rubia, T.; Seager, M., Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening, Proc. Natl. Acad. Sci., 99, 5783 (2002)
[2] Abraham, F. F.; Walkup, R.; Gao, H.; Duchaineau, M.; Diaz De La Rubia, T.; Seager, M., Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Brittle fracture, Proc. Natl. Acad. Sci., 99, 5777 (2002)
[3] Kohlhoff, S.; Gumbsch, P.; Fischmeister, H., Crack propagation in bcc crystals studied with a combined finite-element and atomistic model, Philos. Mag. A, 64, 851-878 (1991)
[4] Tadmor, E. B.; Ortiz, M.; Phillips, R., Quasicontinuum analysis of defects in solids, Philos. Mag. A, 73, 1529-1563 (1996)
[5] Shenoy, V.; Miller, R.; Tadmor, E.; Phillips, R.; Ortiz, M., Quasicontinuum models of interfacial structure and deformation, Phys. Rev. Lett., 80, 742-745 (1998)
[6] Shenoy, V.; Miller, R.; Rodney, D.; Phillips, R.; Ortiz, M., An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method, J. Mech. Phys. Solids, 47, 611-642 (1999) · Zbl 0982.74071
[7] Rudd, R. E.; Broughton, J. Q., Concurrent coupling of length scales in solid state systems, Comput. Simul. Mater. Atomic Level, 251-291 (2000)
[8] Knap, J.; Ortiz, M., An analysis of the quasicontinuum method, J. Mech. Phys. Solids, 49, 1899-1923 (2001) · Zbl 1002.74008
[9] Shilkrot, L.; Miller, R.; Curtin, W., Coupled atomistic and discrete dislocation plasticity, Phys. Rev. Lett., 89, 25501 (2002) · Zbl 1151.74307
[10] Wagner, G. J.; Liu, W. K., Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys., 190, 249-274 (2003) · Zbl 1169.74635
[11] Weinan, E.; Engquist, B.; Huang, Z., Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys. Rev. B, 67, 092101 (2003)
[12] Liu, B.; Huang, Y.; Jiang, H.; Qu, S.; Hwang, K., The atomic-scale finite element method, Comput. Methods Appl. Mech. Engrg., 193, 1849-1864 (2004) · Zbl 1079.74645
[13] Qian, D.; Wagner, G. J.; Liu, W. K., A multiscale projection method for the analysis of carbon nanotubes, Comput. Methods Appl. Mech. Engrg., 193, 1603-1632 (2004) · Zbl 1079.74595
[14] Shilkrot, L.; Miller, R. E.; Curtin, W. A., Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics, J. Mech. Phys. Solids, 52, 755-787 (2004) · Zbl 1049.74015
[15] Xiao, S.; Belytschko, T., A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193, 1645-1669 (2004) · Zbl 1079.74509
[16] To, A. C.; Li, S., Perfectly matched multiscale simulations, Phys. Rev. B, 72, 035414 (2005)
[17] Li, S.; Liu, X.; Agrawal, A.; To, A. C., Perfectly matched multiscale simulations for discrete lattice systems: extension to multiple dimensions, Phys. Rev. B, 74, 045418 (2006)
[18] Fish, J.; Nuggehally, M. A.; Shephard, M. S.; Picu, C. R.; Badia, S.; Parks, M. L.; Gunzburger, M., Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force, Comput. Methods Appl. Mech. Engrg., 196, 4548-4560 (2007) · Zbl 1173.74303
[19] Eidel, B.; Stukowski, A., A variational formulation of the quasicontinuum method based on energy sampling in clusters, J. Mech. Phys. Solids, 57, 87-108 (2009) · Zbl 1298.74011
[20] Zeng, X.; Wang, X.; Lee, J. D.; Lei, Y., Multiscale modeling of nano/micro systems by a multiscale continuum field theory, Comput. Mech., 47, 205-216 (2011) · Zbl 1398.74010
[21] Yang, Q.; Biyikli, E.; Zhang, P.; Tian, R.; To, A. C., Atom collocation method, Comput. Methods Appl. Mech. Engrg. (2012) · Zbl 1253.74127
[22] Tang, S.; Hou, T. Y.; Liu, W. K., A mathematical framework of the bridging scale method, Int. J. Numer. Methods Engrg., 65, 1688-1713 (2006) · Zbl 1117.74056
[23] Park, H. S.; Karpov, E. G.; Liu, W. K.; Klein, P. A., The bridging scale for two-dimensional atomistic/continuum coupling, Philos. Mag., 85, 79-113 (2005)
[24] Park, H. S.; Karpov, E. G.; Klein, P. A.; Liu, W. K., Three-dimensional bridging scale analysis of dynamic fracture, J. Comput. Phys., 207, 588-609 (2005) · Zbl 1213.74267
[25] Badia, S.; Bochev, P.; Fish, J.; Gunzburger, M.; Lehoucq, R.; Nuggehally, M.; Parks, M., A force-based blending model for atomistic-to-continuum coupling, Int. J. Multiscale Comput. Engrg., 5, 387-406 (2007)
[26] Badia, S.; Parks, M.; Bochev, P.; Gunzburger, M.; Lehoucq, R., On atomistic-to-continuum coupling by blending, Multiscale Model. Simul., 7, 381-406 (2008) · Zbl 1160.65338
[27] Parks, M. L.; Bochev, P. B.; Lehoucq, R. B., Connecting atomistic-to-continuum coupling and domain decomposition, Multiscale Model. Simul., 7, 362-380 (2008) · Zbl 1160.65343
[28] Belytschko, T.; Xiao, S., Coupling methods for continuum model with molecular model, Int. J. Multiscale Comput. Engrg., 1 (2003)
[29] Miller, R. E.; Tadmor, E., A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods, Model. Simul. Mater. Sci. Engrg., 17, 053001 (2009)
[30] Curtin, W. A.; Miller, R. E., Atomistic/continuum coupling in computational materials science, Model. Simul. Mater. Sci. Engrg., 11, R33 (2003)
[31] Gunzburger, M.; Zhang, Y., A quadrature-rule type approximation for the quasicontinuum method, Multiscale Model. Simul., 8, 571-590 (2010) · Zbl 1188.70046
[32] Zhang, Y.; Gunzburger, M., Quadrature-rule type approximations to the quasicontinuum method for long-range interatomic interactions, Comput. Methods Appl. Mech. Engrg., 199, 648-659 (2010) · Zbl 1227.74121
[33] Park, H. S.; Liu, W. K., An introduction and tutorial on multiple-scale analysis in solids, Comput. Methods Appl. Mech. Engrg., 193, 1733-1772 (2004) · Zbl 1079.74508
[34] Wernik, J.; Meguid, S. A., Coupling atomistics and continuum in solids: status, prospects, and challenges, Int. J. Mech. Mater. Des., 5, 79-110 (2009)
[35] Liu, W. K.; Karpov, E.; Zhang, S.; Park, H., An introduction to computational nanomechanics and materials, Comput. Methods Appl. Mech. Engrg., 193, 1529-1578 (2004) · Zbl 1079.74506
[36] Yang, J. Z.; Weinan, E., Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: derivation of continuum models from atomistic models, Phys. Rev. B, 74, 184110 (2006)
[37] Luskin, M.; Ortner, C., An analysis of node-based cluster summation rules in the quasicontinuum method, SIAM J. Numer. Anal., 47, 3070 (2009) · Zbl 1196.82122
[38] Park, H. S.; Klein, P. A.; Wagner, G. J., A surface Cauchy-Born model for nanoscale materials, Int. J. Numer. Methods Engrg., 68, 1072-1095 (2006) · Zbl 1128.74005
[39] Park, H. S.; Klein, P. A., Surface Cauchy-Born analysis of surface stress effects on metallic nanowires, Phys. Rev. B, 75, 085408 (2007)
[40] Park, H. S.; Klein, P. A., A surface Cauchy-Born model for silicon nanostructures, Comput. Methods Appl. Mech. Engrg., 197, 3249-3260 (2008) · Zbl 1159.74312
[41] Park, H. S., Surface stress effects on the resonant properties of silicon nanowires, J. Appl. Phys., 103, 123504 (2008)
[42] Park, H. S.; Klein, P. A., Surface stress effects on the resonant properties of metal nanowires: the importance of finite deformation kinematics and the impact of the residual surface stress, J. Mech. Phys. Solids, 56, 3144-3166 (2008) · Zbl 1175.74009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.