Fujita, Kento Simple normal crossing Fano varieties and log Fano manifolds. (English) Zbl 1297.14047 Nagoya Math. J. 214, 95-123 (2014). A log pair \((X,D)\) is called a log Fano manifold if \(X\) is a smooth projective variety, \(D\) a reduced simple normal crossing divisor and \(-(K_X+D)\) is ample. For a log Fano manifold \((X,D)\), the log Fano index is the maximum of integer \(r\) such that \(\mathcal{O}_X (-(K_X+D)) \cong \mathcal{L}^{\otimes r}\) for some line bundle \(\mathcal{L}\). Also, for a log Fano manifold, the log Fano pseudoindex of \((X,D)\) is the minimum of \((-(K_X + D) \cdot C)\), where \(C\) runs over the rational curves on \(X\).The aim of the paper under review is to classify log Fano manifolds with non-zero boundary in terms of their log Fano (pseudo)index. The consideration of the (pseudo)index is natural in the context of the (generalized) Mukai conjecture. In the main theorems, the author classifies (1) \(n\)-dimensional log Fano manifolds with non-zero boundary and with log Fano pseudoindex \(\iota\) such that \(2 \iota \geq n\) and \(\rho (X) \geq 2\), and also classifies (2) \(2 r\)-dimensional log Fano manifolds with log Fano index \(r \geq 2\) such that \(\rho (X) \geq 2\). Combining these results with H. Maeda’s result [Compos. Math. 57, 81–125 (1986; Zbl 0658.14019)], the classification of \(n\)-dimensional log Fano manifolds with log Fano indices \(r \geq n-2\) and with non-zero boundaries is completed. Reviewer: Takuzo Okada (Saga) Cited in 5 Documents MSC: 14J45 Fano varieties 14E30 Minimal model program (Mori theory, extremal rays) Keywords:log Fano manifold; simple normal crossing Fano variety Citations:Zbl 0658.14019 PDF BibTeX XML Cite \textit{K. Fujita}, Nagoya Math. J. 214, 95--123 (2014; Zbl 1297.14047) Full Text: DOI arXiv OpenURL References: [1] F. Ambro, Quasi-log varieties (in Russian), Tr. Mat. Inst. Steklova 240 (2003), 220-239; English translation in Proc. Steklov Inst. Math. 240 (2003), 214-233. · Zbl 1081.14021 [2] M. Andreatta, E. Ballico, and J. A. Wiśniewski, Two theorems on elementary contractions , Math. Ann. 297 (1993), 191-198. · Zbl 0789.14011 [3] M. Andreatta and J. A. Wiśniewski, A note on nonvanishing and applications , Duke. Math. J. 72 (1993), 739-755. · Zbl 0853.14003 [4] K. Cho, Y. Miyaoka, and N. I. Shepherd-Barron, “Characterizations of projective spaces and applications to complex symplectic manifolds” in Higher Dimensional Birational Geometry (Kyoto, 1997) , Adv. Stud. Pure Math. 35 , Math. Soc. Japan, Tokyo, 2002, 1-88. · Zbl 1063.14065 [5] O. Fujino, Introduction to the log minimal model program for log canonical pairs , preprint, [math.AG] 0907.1506v1 · Zbl 1435.14017 [6] T. Fujita, “On polarized manifolds whose adjoint bundles are not semipositive” in Algebraic Geometry (Sendai, 1985) , Adv. Stud. Pure Math. 10 , North-Holland, Amsterdam, 1987, 167-178. · Zbl 0659.14002 [7] T. Fujita, Classification Theories of Polarized Varieties , London Math. Soc. Lecture Note Ser. 155 , Cambridge University Press, Cambridge, 1990. · Zbl 0743.14004 [8] M. Goresky and R. MacPherson, Stratified Morse Theory , Ergeb. Math. Grenzgeb. (3) 14 , Springer, Berlin, 1988. · Zbl 0639.14012 [9] V. A. Iskovskikh, Fano threefolds, I , Izv. Ross. Akad. Nauk Ser. Mat. 41 (1977), 516-562, 717; II , 42 (1978), 506-549. [10] S. Kobayashi and T. Ochiai, Characterizations of complex projective spaces and hyperquadrics , J. Math. Kyoto Univ. 13 (1973), 31-47. · Zbl 0261.32013 [11] J. Kollár, “Adjunction and discrepancies” in Flips and Abundance for Algebraic Threefolds (Salt Lake City, 1991) , Astérisque 211 , Soc. Math. France, Paris, 1992, 183-192. · Zbl 0810.14004 [12] J. Kollár, Singularities of the Minimal Model Program , Cambridge Tracts in Math. 200 , Cambridge University Press, Cambridge, 2013. [13] J. Kollár, New examples of terminal and log canonical singularities , preprint, [math.AG] 1107.2864v1 [14] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties , Cambridge Tracts in Math. 134 , Cambridge University Press, Cambridge, 1998. [15] H. Maeda, Classification of logarithmic Fano threefolds , Compos. Math. 57 (1986), 81-125. · Zbl 0658.14019 [16] H. Matsumura, Commutative Ring Theory , Cambridge Stud. Adv. Math. 8 , Cambridge University Press, Cambridge, 1986. · Zbl 0603.13001 [17] S. Mori and S. Mukai, Classification of Fano \(3\)-folds with \(B_{2}\geq2\) , Manuscripta Math. 36 (1981/82), 147-162; Erratum, Manuscripta Math. 110 (2003), 407. · Zbl 0478.14033 [18] S. Mukai, “Problems on characterization of the complex projective space” in Birational Geometry of Algebraic Varieties, Open Problems (Katata, 1988) , Taniguchi Foundation, Katata, 1988, 57-60. [19] S. Mukai, Biregular classification of Fano \(3\)-folds and Fano manifolds of coindex \(3\) , Proc. Natl. Acad. Sci. USA 86 (1989), 3000-3002. · Zbl 0679.14020 [20] C. Novelli and G. Occhetta, Rational curves and bounds on the Picard number of Fano manifolds , Geom. Dedicata 147 (2010), 207-217. · Zbl 1208.14033 [21] J. Wiśniewski, Fano \(4\)-folds of index \(2\) with \(b_{2}\geq2\): A contribution to Mukai classification , Bull. Pol. Acad. Sci. Math. 38 (1990), 173-184. · Zbl 0766.14036 [22] J. A. Wiśniewski, On a conjecture of Mukai , Manuscripta Math. 68 (1990), 135-141. · Zbl 0715.14033 [23] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds , J. Reine Angew. Math. 417 (1991), 141-157. · Zbl 0721.14023 [24] J. A. Wiśniewski, On Fano manifolds of large index , Manuscripta Math. 70 (1991), 145-152. · Zbl 0726.14028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.