Bulut, Hasan; Baskonus, Haci Mehmet; Belgacem, Fethi Bin Muhammad The analytical solution of some fractional ordinary differential equations by the Sumudu transform method. (English) Zbl 1297.34005 Abstr. Appl. Anal. 2013, Article ID 203875, 6 p. (2013). Summary: We introduce the basics of fractional calculus and applications of the Sumudu transform to fractional derivatives. Cited in 36 Documents MSC: 34A08 Fractional ordinary differential equations 34A05 Explicit solutions, first integrals of ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Watugala, G. K., Sumudu transform: a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 24, 1, 35-43 (1993) · Zbl 0768.44003 · doi:10.1080/0020739930240105 [2] Watugala, G. K., Sumudu transform—a new integral transform to solve differential equations and control engineering problems, Mathematical Engineering in Industry, 6, 4, 319-329 (1998) · Zbl 0916.44002 [3] Watugala, G. K., The Sumudu transform for functions of two variables, Mathematical Engineering in Industry, 8, 4, 293-302 (2002) · Zbl 1025.44003 [4] Weerakoon, S., Application of Sumudu transform to partial differential equations, International Journal of Mathematical Education in Science and Technology, 25, 2, 277-283 (1994) · Zbl 0812.35004 · doi:10.1080/0020739940250214 [5] Weerakoon, S., Complex inversion formula for Sumudu transform, International Journal of Mathematical Education in Science and Technology, 29, 4, 618-621 (1998) · Zbl 1018.44004 [6] Deakin, M. A. B., The “Sumudu transform” and the Laplace transform, International Journal of Mathematical Education in Science and Technology, 28, 159 (1997) · Zbl 0885.44002 [7] Weerakoon, S., The “Sumudu transform” and the Laplace transform—reply, International Journal of Mathematical Education in Science and Technology, 28, 1, 160 (1997) · Zbl 0885.44003 [8] Asiru, M. A., Sumudu transform and the solution of integral equations of convolution type, International Journal of Mathematical Education in Science and Technology, 32, 6, 906-910 (2001) · Zbl 1008.45003 · doi:10.1080/002073901317147870 [9] Aşiru, M. A., Further properties of the Sumudu transform and its applications, International Journal of Mathematical Education in Science and Technology, 33, 3, 441-449 (2002) · Zbl 1013.44001 · doi:10.1080/002073902760047940 [10] Belgacem, F. B. M.; Karaballi, A. A.; Kalla, S. L., Analytical investigations of the Sumudu transform and applications to integral production equations, Mathematical Problems in Engineering, 3-4, 103-118 (2003) · Zbl 1068.44001 · doi:10.1155/S1024123X03207018 [11] Belgacem, F. B. M.; Karaballi, A., Sumudu transform fundamental properties investigations and applications, Journal of Applied Mathematics and Stochastic Analysis (2006) · Zbl 1115.44001 · doi:10.1155/JAMSA/2006/91083 [12] Belgacem, F. B. M., Introducing and analyzing deeper Sumudu properties Sumudu transform fundemantal properties investigations and applications, Nonlinear Studies Journal, 1, 31, 101-114 (2006) [13] Belgacem, F. B. M., Applications of the Sumudu transform to indefinite periodic parabolic problems, Proceedings of the International Conference on Nonlinear Problems and Aerospace Applications (ICNPAA ’06) [14] Hussain, M. G. M.; Belgacem, F. B. M., Transient solutions of Maxwell’s equations based on Sumudu transform, Progress in Electromagnetics Research, 74, 273-289 (2007) [15] Belgacem, F. B. M., Sumudu applications to Maxwell’s equations, The Plan Index Enquiry and Retrieval System Online, 5, 355-360 (2009) [16] Belgacem, F. B. M., Sumudu transform applications to Bessel functions and equations, Applied Mathematical Sciences, 4, 73-76, 3665-3686 (2010) · Zbl 1220.44001 [17] Katatbeh, Q. D.; Belgacem, F. B. M., Applications of the Sumudu transform to fractional differential equations, Nonlinear Studies, 18, 1, 99-112 (2011) · Zbl 1223.44001 [18] Salinas, S.; Jimenez, A.; Arteaga, F.; Rodriguez, J., Estudio analitico de la transformada de Sumudu y algunas aplicaciones a la teoria de control, Revista Ingeneria UC, 11, 3, 79-86 (2004) [19] Rana, M. A.; Siddiqui, A. M.; Ghori, Q. K.; Qamar, R., Application of He’s homotopy perturbation method to Sumudu transform, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 2, 185-190 (2007) [20] Tamrabet, A.; Kadem, A., A combined Walsh function and Sumudu transform for solving the two-dimensional neutron transport equation, International Journal of Mathematical Analysis, 1, 9-12, 409-421 (2007) · Zbl 1130.45010 [21] Tchuenche, J. M.; Mbare, N. S., An application of the double Sumudu transform, Applied Mathematical Sciences, 1, 1-4, 31-39 (2007) · Zbl 1154.44001 [22] Zhang, J., Sumudu transform based coefficients calculation, Nonlinear Studies, 15, 4, 355-372 (2008) · Zbl 1177.65188 [23] Chaurasia, V. B. L.; Dubey, R. S.; Belgacem, F. B. M., Fractional radial diffusion equation analytical solution via Hankel and Sumudu transforms, International Journal of Mathematics in Engineering Science and Aerospace, 3, 2, 1-10 (2012) · Zbl 1247.26011 [24] Goswami, P.; Belgacem, F. B. M., Fractional differential equation solutions through a Sumudu rational, Nonlinear Studies, 19, 4, 591-598 (2012) · Zbl 1300.34016 [25] Belgacem, F. B. M., Introducing and analysing deeper Sumudu properties, Nonlinear Studies, 13, 1, 23-41 (2006) · Zbl 1102.44001 [26] Belgacem, F. B. M.; Silambarasan, R., Maxwell’s equations solutions by means of the natural transform, International Journal of Mathematics in Engineering, Science And Aeorospace, 3, 3, 313-323 (2012) · Zbl 1269.35042 [27] Alomari, S. K., An estimate of Sumudu transforms for Boehmians, Proceedings of the Conference on Mathematical problems in Engineering, Aerospace and Science [28] Bulut, H.; Baskonus, H. M.; Tuluce, S., The solutions of partial differential equations with variable coefficients by sumudu transform method, AIP Proceeding, 1493, 91 (2012) [29] Khan, H. Z.; Khan, W. A., N-transform-properties and applications, NUST Journal of Engineering Sciences, 1, 1, 127-133 (2008) [30] Adomian, G., A review of the decomposition method and some recent results for nonlinear equations, Mathematical and Computer Modelling, 13, 7, 17-43 (1990) · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7 [31] Adomian, G.; Rach, R., Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Computers & Mathematics with Applications, 19, 12, 9-12 (1990) · Zbl 0702.35058 · doi:10.1016/0898-1221(90)90246-G [32] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method. Solving Frontier Problems of Physics: The Decomposition Method, Fundamental Theories of Physics, 60, xiv+352 (1994), Boston, Mass, USA: Kluwer Academic Publishers, Boston, Mass, USA · Zbl 0802.65122 [33] Adomian, G., A review of the decomposition method in applied mathematics, Journal of Mathematical Analysis and Applications, 135, 2, 501-544 (1988) · Zbl 0671.34053 · doi:10.1016/0022-247X(88)90170-9 [34] Deng, Z.-G.; Wu, G.-C., Approximate solution of fractional differential equations with uncertainty, Romanian Journal of Physics, 56, 7-8, 868-872 (2011) [35] Abdou, M. A.; Soliman, A. A., Variational iteration method for solving Burger’s and coupled Burger’s equations, Journal of Computational and Applied Mathematics, 181, 2, 245-251 (2005) · Zbl 1072.65127 · doi:10.1016/j.cam.2004.11.032 [36] Odibat, Z. M.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, International Journal of Nonlinear Sciences and Numerical Simulation, 7, 1, 27-34 (2006) · Zbl 1401.65087 [37] He, J.-H.; Wu, X.-H., Variational iteration method: new development and applications, Computers & Mathematics with Applications, 54, 7-8, 881-894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083 [38] Sweilam, N. H., Fourth order integro-differential equations using variational iteration method, Computers & Mathematics with Applications, 54, 7-8, 1086-1091 (2007) · Zbl 1141.65399 · doi:10.1016/j.camwa.2006.12.055 [39] Abbasbandy, S., A new application of He’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials, Journal of Computational and Applied Mathematics, 207, 1, 59-63 (2007) · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012 [40] Wazwaz, A.-M., The variational iteration method for exact solutions of Laplace equation, Physics Letters A, 363, 4, 260-262 (2007) · Zbl 1197.65204 · doi:10.1016/j.physleta.2006.11.014 [41] Asiru, M. A., Application of the sumudu transform to discrete dynamical systems, International Journal of Mathematical Education, Science and Technology, 34, 6, 944-949 (2003) [42] Bulut, H.; Baskonus, H. M.; Tuluce, S., Homotopy perturbation sumudu transform method for heat equations, Mathematics in Engineering, Science and Aerospace, 4, 1, 49-60 (2013) · Zbl 1262.35005 [43] Jarad, F.; Taş, K., On Sumudu transform method in discrete fractional calculus, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.34014 · doi:10.1155/2012/270106 [44] Gupta, V. G.; Shrama, B.; Kiliçman, A., A note on fractional Sumudu transform, Journal of Applied Mathematics, 2010 (2010) · Zbl 1202.26014 · doi:10.1155/2010/154189 [45] Mittal, R. C.; Nigam, R., Solution of fractional integro-differential equations by adomian decomposition method, The International Journal of Applied Mathematics and Mechanics, 4, 2, 87-94 (2008) [46] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008 [47] Caputo, M., Linear model of dissipation whose Q is almost frequency independent-II, Geophysical Journal of the Royal Astronomical Society, 13, 5, 529-539 (1967) [48] Belgacem, F. B. M.; Silambarasan, R., The Sumudu transform analysis by infinite series, Proceedings of the AIP Proceeding [49] Goswami, P.; Belgacem, F. B. M., Solving special fractional differential equations by the Sumudu transform, Proceedings of the AIP Proceeding [50] Odibat, Z. M.; Momani, S., An algorithm for the numerical solution of differential equations of fractional order, Journal of Applied Mathematics and Informatics, 26, 1-2, 15-127 [51] Ford, N. J.; Simpson, A. C., The numerical solution of fractional differential equations: speed versus accuracy, Numerical Analysis Report, no. 385 (2003), A Report in Association with Chester College This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.