×

Some convergence theorems for contractive type mappings in \(CAT(0)\) spaces. (English) Zbl 1297.54089

Summary: We establish theorems of strong convergence, for the Ishikawa-type (or two step) iteration scheme, to a fixed point of a uniformly \(L\)-Lipschitzian asymptotically demicontractive mapping and a uniformly \(L\)-Lipschitzian hemicontractive mapping in \(CAT(0)\) space. Moreover, we will propose some open problems.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Takahashi, W., A convexity in metric space and nonexpansive mappings. I, Kōdai Mathematical Seminar Reports, 22, 142-149 (1970) · Zbl 0268.54048
[2] Kim, J. K.; Kim, K. S.; Nam, Y. M., Convergence and stability of iterative processes for a pair of simultaneously asymptotically quasi-nonexpansive type mappings in convex metric spaces, Journal of Computational Analysis and Applications, 9, 2, 159-172 (2007) · Zbl 1136.47044
[3] Gromov, M., Hyperbolic groups, Essays in Group Theory. Essays in Group Theory, Publications of the Research Institute for Mathematical Sciences, 8, 75-263 (1987), New York, NY, USA: Springer, New York, NY, USA · Zbl 0634.20015
[4] Bridson, M. R.; Haefliger, A., Metric Spaces of Non-Positive Curvature (1999), Berlin, Germany: Springer, Berlin, Germany · Zbl 0988.53001
[5] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry. A Course in Metric Geometry, Graduate Studies in Mathematics, 33 (2001), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0981.51016
[6] Kirk, W. A., Fixed point theorems in CAT(0) spaces and \(R\)-trees, Fixed Point Theory and Applications, 4, 309-316 (2004) · Zbl 1089.54020
[7] Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. I. Données radicielles valuées, Institut des Hautes Études Scientifiques. Publications Mathématiques, 41, 5-251 (1972)
[8] Khamsi, M. A.; Kirk, W. A., On uniformly Lipschitzian multivalued mappings in Banach and metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 72, 3-4, 2080-2085 (2010) · Zbl 1218.47077
[9] Dhompongsa, S.; Panyanak, B., On \(\Delta \)-convergence theorems in CAT(0) spaces, Computers & Mathematics with Applications, 56, 10, 2572-2579 (2008) · Zbl 1165.65351
[10] Liu, Q., Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Analysis. Theory, Methods & Applications, 26, 11, 1835-1842 (1996) · Zbl 0861.47047
[11] Schu, J., Iterative construction of fixed points of asymptotically nonexpansive mappings, Journal of Mathematical Analysis and Applications, 158, 2, 407-413 (1991) · Zbl 0734.47036
[12] Chaoha, P.; Phon-on, A., A note on fixed point sets in CAT(0) spaces, Journal of Mathematical Analysis and Applications, 320, 2, 983-987 (2006) · Zbl 1101.54040
[13] Chidume, C. E., Convergence theorems for asymptotically pseudocontractive mappings, Nonlinear Analysis. Theory, Methods & Applications, 49, 1, 1-11 (2002) · Zbl 1014.47030
[14] Ding, X. P., Iteration processes for nonlinear mappings in convex metric spaces, Journal of Mathematical Analysis and Applications, 132, 1, 114-122 (1988) · Zbl 0683.47044
[15] Goebel, K.; Reich, S., Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83 (1984), New York, NY, USA: Marcel Dekker, New York, NY, USA
[16] Huang, J.-C., Implicit iteration process for a finite family of asymptotically hemi-contractive mappings in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, 66, 9, 2091-2097 (2007) · Zbl 1129.47052
[17] Kim, J. K.; Kim, K. S.; Kim, S. M., Convergence theorems of implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, RIMS Kokyuroku, 1484, 40-51 (2006)
[18] Kim, J. K.; Kim, K. H.; Kim, K. S., Convergence theorems of modified three-step iterative sequences with mixed errors for asymptotically quasi-nonexpansive mappings in Banach spaces, Panamerican Mathematical Journal, 14, 1, 45-54 (2004) · Zbl 1076.47056
[19] Kim, J. K.; Kim, K. H.; Kim, K. S., Three-step iterative sequences with errors for asymptotically quasi-nonexpansive mappings in convex metric spaces, RIMS Kokyuroku, 1365, 156-165 (2004)
[20] Kohlenbach, U.; Leuştean, L., Mann iterates of directionally nonexpansive mappings in hyperbolic spaces, Abstract and Applied Analysis, 8, 449-477 (2003) · Zbl 1038.47037
[21] Leustean, L., A quadratic rate of asymptotic regularity for CAT(0)-spaces, Journal of Mathematical Analysis and Applications, 325, 1, 386-399 (2007) · Zbl 1103.03057
[22] Moore, C.; Nnoli, B. V. C., Iterative sequence for asymptotically demicontractive maps in Banach spaces, Journal of Mathematical Analysis and Applications, 302, 2, 557-562 (2005) · Zbl 1062.47070
[23] Osilike, M. O.; Udomene, A.; Igbokwe, D. I.; Akuchu, B. G., Demiclosedness principle and convergence theorems for \(k\)-strictly asymptotically pseudocontractive maps, Journal of Mathematical Analysis and Applications, 326, 2, 1334-1345 (2007) · Zbl 1115.47054
[24] Reich, S.; Shafrir, I., Nonexpansive iterations in hyperbolic spaces, Nonlinear Analysis. Theory, Methods & Applications, 15, 6, 537-558 (1990) · Zbl 0728.47043
[25] Saejung, S., Halpern’s iteration in CAT(0) spaces, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1197.54074
[26] Wang, C.; Liu, L.-W., Convergence theorems for fixed points of uniformly quasi-Lipschitzian mappings in convex metric spaces, Nonlinear Analysis. Theory, Methods & Applications, 70, 5, 2067-2071 (2009) · Zbl 1225.47114
[27] Zhou, H.; Su, Y., Strong convergence theorems for a family of quasi-asymptotic pseudo-contractions in Hilbert spaces, Nonlinear Analysis. Theory, Methods & Applications, 70, 11, 4047-4052 (2009) · Zbl 1223.47111
[28] Ishikawa, S., Fixed points by a new iteration method, Proceedings of the American Mathematical Society, 44, 147-150 (1974) · Zbl 0286.47036
[29] Mann, W. R., Mean value methods in iteration, Proceedings of the American Mathematical Society, 4, 506-510 (1953) · Zbl 0050.11603
[30] Kim, K. S., Ergodic theorems for reversible semigroups of nonlinear operators, Journal of Nonlinear and Convex Analysis, 13, 1, 85-95 (2012) · Zbl 1236.43001
[31] Lau, A. T.-M., Invariant means on almost periodic functions and fixed point properties, The Rocky Mountain Journal of Mathematics, 3, 69-76 (1973) · Zbl 0279.43002
[32] Lau, A. T.-M., Semigroup of nonexpansive mappings on a Hilbert space, Journal of Mathematical Analysis and Applications, 105, 2, 514-522 (1985) · Zbl 0656.47049
[33] Lau, A. T.-M., Invariant means and fixed point properties of semigroup of nonexpansive mappings, Taiwanese Journal of Mathematics, 12, 6, 1525-1542 (2008) · Zbl 1181.47062
[34] Lau, A. T.-M.; Takahashi, W., Invariant means and fixed point properties for non-expansive representations of topological semigroups, Topological Methods in Nonlinear Analysis, 5, 1, 39-57 (1995) · Zbl 0834.43001
[35] Day, M. M., Amenable semigroups, Illinois Journal of Mathematics, 1, 509-544 (1957) · Zbl 0078.29402
[36] Lau, A. T.-M.; Shioji, N.; Takahashi, W., Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces, Journal of Functional Analysis, 161, 1, 62-75 (1999) · Zbl 0923.47038
[37] Holmes, R. D.; Lau, A. T.-M., Non-expansive actions of topological semigroups and fixed points, Journal of the London Mathematical Society, 5, 2, 330-336 (1972) · Zbl 0248.47029
[38] Kim, K. S., Nonlinear ergodic theorems of nonexpansive type mappings, Journal of Mathematical Analysis and Applications, 358, 2, 261-272 (2009) · Zbl 1172.47040
[39] Lau, A. T.-M.; Mah, P. F., Fixed point property for Banach algebras associated to locally compact groups, Journal of Functional Analysis, 258, 2, 357-372 (2010) · Zbl 1185.43002
[40] Lau, A. T.-M.; Takahashi, W., Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific Journal of Mathematics, 126, 2, 277-294 (1987) · Zbl 0587.47058
[41] Lau, A. T.-M.; Zhang, Y., Fixed point properties of semigroups of non-expansive mappings, Journal of Functional Analysis, 254, 10, 2534-2554 (2008) · Zbl 1149.47046
[42] Kim, K. S., Convergence of a hybrid algorithm for a reversible semigroup of nonlinear operators in Banach spaces, Nonlinear Analysis. Theory, Methods & Applications, 73, 10, 3413-3419 (2010) · Zbl 1202.26007
[43] Saewan, S.; Kumam, P., Explicit iterations for Lipschitzian semigroups with the Meir-Keeler type contraction in Banach spaces, Journal of Inequalities and Applications, 2012, article 279 (2012) · Zbl 1524.47116
[44] Song, Y.; Xu, S., Strong convergence theorems for nonexpansive semigroup in Banach spaces, Journal of Mathematical Analysis and Applications, 338, 1, 152-161 (2008) · Zbl 1138.47040
[45] Wu, C.; Cho, S. Y.; Shang, M., Moudafi’s viscosity approximations with demi-continuous and strong pseudo-contractions for non-expansive semigroups, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1187.47055
[46] Espínola, R.; Fernández-León, A., CAT \((κ)\)-spaces, weak convergence and fixed points, Journal of Mathematical Analysis and Applications, 353, 1, 410-427 (2009) · Zbl 1182.47043
[47] Kimura, Y.; Satô, K., Convergence of subsets of a complete geodesic space with curvature bounded above, Nonlinear Analysis. Theory, Methods & Applications, 75, 13, 5079-5085 (2012) · Zbl 1243.49054
[48] Kimura, Y.; Satô, K., Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one, Fixed Point Theory and Applications, 2013, article 7 (2013) · Zbl 1423.47042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.