Shimizu, Ayaka Region crossing change is an unknotting operation. (English) Zbl 1297.57021 J. Math. Soc. Japan 66, No. 3, 693-708 (2014). Summary: A region crossing change is a local transformation on a knot or link diagram. We show that a region crossing change on a knot diagram is an unknotting operation, and we define the region unknotting number for a knot diagram and a knot. Cited in 4 ReviewsCited in 29 Documents MSC: 57M25 Knots and links in the \(3\)-sphere (MSC2010) 57M27 Invariants of knots and \(3\)-manifolds (MSC2010) Keywords:crossing number; knot diagram; local move; region crossing change; unknotting operation × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] H. Aida, Unknotting operations of polygonal type, Tokyo J. Math., 15 (1992), 111-121. · Zbl 0773.57003 · doi:10.3836/tjm/1270130254 [2] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, In: Computational Problems in Abstract Algebra, Oxford, 1967, (ed. J. Leech), Pergamon Press, New York, 1970, pp.,329-358. · Zbl 0202.54703 [3] A. Kawauchi, A Survey of Knot Theory, Birkhäuser, Basel, 1996. · Zbl 0861.57001 [4] W. W. Menasco and M. B. Thistlethwaite, The classification of alternating links, Ann. of Math., 138 (1993), 113-171. · Zbl 0809.57002 · doi:10.2307/2946636 [5] W. W. Menasco and M. B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc., 25 (1991), 403-412. · Zbl 0745.57002 · doi:10.1090/S0273-0979-1991-16083-0 [6] H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45. · Zbl 0535.57005 · doi:10.1007/BF01455526 [7] Y. Nakanishi, Replacements in the Conway third identity, Tokyo J. Math., 14 (1991), 197-203. · Zbl 0742.57007 · doi:10.3836/tjm/1270130499 [8] D. Rolfsen, Knots and Links, Publish or Perish, Inc., Berkely, 1976. · Zbl 0339.55004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.