×

zbMATH — the first resource for mathematics

Unified description of cosmological and static solutions in affine generalized theories of gravity: vecton-scalaron duality and its applications. (English. Russian original) Zbl 1297.83033
Theor. Math. Phys. 177, No. 2, 1555-1577 (2013); translation from Teor. Mat. Fiz. 177, No. 2, 323-352 (2013).
Summary: We briefly describe the simplest class of affine theories of gravity in multidimensional space-times with symmetric connections and their reductions to two-dimensional dilaton-vecton gravity field theories. The distinctive feature of these theories is the presence of an absolutely neutral massive (or tachyonic) vector field (vecton) with an essentially nonlinear coupling to the dilaton gravity. We emphasize that the vecton field in dilaton-vecton gravity can be consistently replaced by a new effectively massive scalar field (scalaron) with an unusual coupling to the dilaton gravity. With this vecton-scalaron duality, we can use the methods and results of the standard dilaton gravity coupled to usual scalars in more complex dilaton-scalaron gravity theories equivalent to dilaton-vecton gravity. We present the dilaton-vecton gravity models derived by reductions of multidimensional affine theories and obtain one-dimensional dynamical systems simultaneously describing cosmological and static states in any gauge. Our approach is fully applicable to studying static and cosmological solutions in multidimensional theories and also in general one-dimensional dilaton-scalaron gravity models. We focus on general and global properties of the models, seeking integrals and analyzing the structure of the solution space. In integrable cases, it can be usefully visualized by drawing a “topological portrait” resembling the phase portraits of dynamical systems and simply exposing the global properties of static and cosmological solutions, including horizons, singularities, etc. For analytic approximations, we also propose an integral equation well suited for iterations.

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Cosmology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] V. Sahni and A. Starobinsky, Internat. J. Mod. Phys. D, 15, 2105–2132 (2006); arXiv:astro-ph/0610026v3 (2006). · Zbl 1118.83001 · doi:10.1142/S0218271806009704
[2] E. J. Copeland, M. Sami, and S. Tsujikawa, Internat. J. Mod. Phys. D, 15, 1753–1935 (2006); arXiv:hep-th/0603057v3 (2006). · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[3] A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland (1990); arXiv:hep-th/0503203v1 (2005).
[4] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York (2005). · Zbl 1095.83002
[5] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford (2008).
[6] V. A. Rubakov and D. S. Gorbunov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory [in Russian], URSS, Moscow (2008); English transl., World Scientific, Hackensack, N. J. (2011). · Zbl 1217.83002
[7] D. Langlois, ”Lectures on inflation and cosmological perturbations,” arXiv:1001.5259v1 [astro-ph.CO] (2010).
[8] A. H. Guth and Y. Nomura, Phys. Rev. D, 86, 023534 (2012); arXiv:1203.6876v2 [hep-th] (2012). · doi:10.1103/PhysRevD.86.023534
[9] D. Mulryne and J. Ward, Class. Q. Grav., 28, 204010 (2011); arXiv:1105.5421v3 [astro-ph.CO] (2011). · Zbl 1228.83140 · doi:10.1088/0264-9381/28/20/204010
[10] S. R. Green, E. J. Martinec, C. Quigley, and S. Sethi, Class. Q. Grav., 29, 075006 (2012); arXiv:1110.0545v4 [hep-th] (2011). · Zbl 1241.83081 · doi:10.1088/0264-9381/29/7/075006
[11] N. Mavromatos, ”The issue of dark energy in string theory,” in: The Invisible Universe: Dark Matter and Dark Energy (Lect. Notes Phys., Vol. 720, L. Papantonopoulos, ed.), Springer, Berlin (2007), pp. 333–374; arXiv:hep-th/0507006v1 (2005).
[12] R. Bousso, ”The cosmological constant problem, dark energy, and the landscape of string theory,” arXiv:1203.0307v2 [astro-ph.CO] (2012).
[13] S. Nojiri and S. D. Odintsov, Phys. Rep., 505, 59–144 (2011); arXiv:1011.0544v4 [gr-qc] (2010). · doi:10.1016/j.physrep.2011.04.001
[14] T. Clifton, P. Ferreira, A. Padilla, and C. Skordis, Phys. Rep., 513, 1–189 (2012); arXiv:1106.2476v3 [astro-ph. CO] (2011). · doi:10.1016/j.physrep.2012.01.001
[15] D. Rodrigues, F. de Salles, I. Shapiro, and A. Starobinsky, Phys. Rev. D, 83, 084028 (2011); arXiv:1101.5028v2 [gr-qc] (2011). · doi:10.1103/PhysRevD.83.084028
[16] Ph. Brax, Acta Phys. Polon. B, 43, 2307–2329 (2012); arXiv:1211.5237v1 [hep-th] (2012). · Zbl 1371.83192 · doi:10.5506/APhysPolB.43.2307
[17] J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep., 337, 343–492 (2000); arXiv:hep-th/9909061v2 (1999). · doi:10.1016/S0370-1573(00)00064-8
[18] A. T. Filippov, ”On Einstein-Weyl unified model of dark energy and dark matter,” arXiv:0812.2616v2 [gr-qc] (2008).
[19] A. T. Filippov, Theor. Math. Phys., 163, 753–767 (2010); arXiv:1003.0782v2 [hep-th] (2010). · Zbl 1253.83048 · doi:10.1007/s11232-010-0059-6
[20] A. T. Filippov, Proc. Steklov Inst. Math., 272, 107–118 (2011); arXiv:1008.2333v3 [hep-th] (2010). · Zbl 1228.83092 · doi:10.1134/S008154381101010X
[21] A. T. Filippov, ”An old Einstein-Eddington generalized gravity and modern ideas on branes and cosmology,” in: Gribov-80 Memorial Volume (Yu. L. Dokshitzer, P. Levai, and J. Nyiri, eds.), World Scientific, Singapore (2011), pp. 479–495; arXiv:1011.2445v1 [gr-qc] (2010).
[22] A. T. Filippov, ”General properties and some solutions of generalized Einstein-Eddington affine gravity I,” arXiv:1112.3023v1 [math-ph] (2011).
[23] S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge Univ. Press, New York (1998). · Zbl 0919.53024
[24] E. Witten, ”Three-dimensional gravity revisited,” arXiv:0706.3359v1 [hep-th] (2007). · Zbl 1200.17014
[25] A. T. Filippov, ”Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static-cosmological duality,” arXiv:hep-th/0605276v2 (2006).
[26] S. Chandrasekhar, The Mathematical Theory of Black Holes (Ser. Monogr. Phys., Vol. 69), Oxford Univ. Press, Oxford (1983). · Zbl 0511.53076
[27] P. Breitenlohner, G. Gibbons, and D. Maison, Commun. Math. Phys., 120, 295–333 (1988). · Zbl 0661.53064 · doi:10.1007/BF01217967
[28] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2003). · Zbl 1057.83004
[29] A. T. Filippov, Modern Phys. Lett. A, 11, 1691–1704 (1996); Internat. J. Mod. Phys. A, 12, 13–22 (1997); arXiv:gr-qc/9612058v1 (1996). · Zbl 1022.81736 · doi:10.1142/S0217732396001685
[30] A. T. Filippov, ”Integrable models of horizons and cosmologies,” arXiv:hep-th/0307266v1 (2003).
[31] V. de Alfaro and A. T. Filippov, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 140, 139–145 (2007); arXiv:hep-th/0307269v1 (2003).
[32] V. de Alfaro and A. T. Filippov, ”Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” arXiv:hep-th/0504101v1 (2005). · Zbl 1082.83027
[33] V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 162, 34–56 (2010); arXiv:0902.4445v1 [hep-th] (2009). · Zbl 1205.37078 · doi:10.1007/s11232-010-0002-x
[34] A. T. Filippov and D. Maison, Class. Q. Grav., 20, 1779–1786 (2003); arXiv:gr-qc/0210081v1 (2002). · Zbl 1033.83024 · doi:10.1088/0264-9381/20/9/313
[35] R. Arnowitt, S. Deser, and C.W. Misner, ”The dynamics of general relativity,” in: Gravitation: An Introduction to Current Research (L. Witten, ed.), Wiley, New York (1962), pp. 227–264; arXiv:gr-qc/0405109v1 (2005). · Zbl 1152.83320
[36] A. T. Filippov, Theor. Math. Phys., 146, 95–107 (2006); arXiv:hep-th/0505060v2 (2005). · Zbl 1177.83100 · doi:10.1007/s11232-006-0010-z
[37] V. De Alfaro and A. T. Filippov, Theor. Math. Phys., 153, 1709–1731 (2007); arXiv:hep-th/0612258v2 (2006). · Zbl 1148.83019 · doi:10.1007/s11232-007-0142-9
[38] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. Press, Princeton, N. J. (2008). · Zbl 0838.53053
[39] D. Grumiller, W. Kummer, and D. Vassilevich, Phys. Rep., 369, 327–430 (2002); arXiv:hep-th/0204253v9 (2002). · Zbl 0998.83038 · doi:10.1016/S0370-1573(02)00267-3
[40] R. Jackiw, Theor. Math. Phys., 92, 979–987 (1992). · Zbl 0806.53075 · doi:10.1007/BF01017075
[41] C. Callan Jr., S. Giddings, J. Harvey, and A. Strominger, Phys. Rev. D, 45, R1005–R1009 (1992). · doi:10.1103/PhysRevD.45.R1005
[42] V. P. Frolov and I. D. Novikov, Black Hole Physics: Basic Concepts and New Developments (Fund. Theories Phys., Vol. 96), Springer, Berlin (1998). · Zbl 0978.83001
[43] E. A. Davydov and A. T. Filippov, ”Dilaton-scalar models in context of generalized affine gravity theories: Their properties and integrability,” arXiv:1302.6969v2 [hep-th] (2013). · Zbl 1315.83038
[44] L. H. Ford, Phys. Rev. D, 40, 967–972 (1989). · doi:10.1103/PhysRevD.40.967
[45] M. Cavaglia, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661–672 (1995); arXiv:gr-qc/9411070v2 (1994); 5, 227–250 (1996); arXiv:gr-qc/9508062v1 (1995). · doi:10.1142/S0218271895000442
[46] M. Cavaglia, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. A, 10, 611–633 (1995); arXiv:gr-qc/9402031v1 (1994). · Zbl 1044.83524 · doi:10.1142/S0217751X95000279
[47] H. Hamber, Quantum Gravitation: The Feynman Path Integral Approach, Springer, Berlin (2009). · Zbl 1171.81001
[48] D. Oriti, ed., Approaches to Quantum Gravity: Toward a New Understanding of Space, Time, and Matter, Cambridge Univ. Press, Cambridge (2009). · Zbl 1168.83002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.