×

Fractional complex transform and exp-function methods for fractional differential equations. (English) Zbl 1298.34008

Summary: The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie’s modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.

MSC:

34A08 Fractional ordinary differential equations
34A05 Explicit solutions, first integrals of ordinary differential equations

References:

[1] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), New York, NY, USA: Akademic Press, New York, NY, USA · Zbl 0428.26004
[2] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations. An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[3] Podlubny, I., Fractional differential equations. Fractional differential equations, Mathematics in Science and Engineering, 198 (1999), San Diego, CA, USA: Academic Press, San Diego, CA, USA · Zbl 0918.34010
[4] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1092.45003
[5] Zhang, S.; Zong, Q.-A.; Liu, D.; Gao, Q., A generalized exp-function method for fractional riccati differential equations, Communications in Fractional Calculus, 1, 1, 48-51 (2010)
[6] Zhang, S.; Zhang, H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A, 375, 7, 1069-1073 (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[7] Tang, B.; He, Y.; Wei, L.; Zhang, X., A generalized fractional sub-equation method for fractional differential equations with variable coefficients, Physics Letters A, 376, 38-39, 2588-2590 (2012) · Zbl 1266.34014 · doi:10.1016/j.physleta.2012.07.018
[8] Guo, S.; Mei, L.; Li, Y.; Sun, Y., The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Physics Letters A, 376, 4, 407-411 (2012) · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[9] Zheng, B., (G′/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Communications in Theoretical Physics, 58, 5, 623-630 (2012) · Zbl 1264.35273
[10] Gepreel, K. A.; Omran, S., Exact solutions for nonlinear partial fractional differential equations, Chinese Physics B, 21, 11 (2012)
[11] Lu, B., The first integral method for some time fractional differential equations, Journal of Mathematical Analysis and Applications, 395, 2, 684-693 (2012) · Zbl 1246.35202 · doi:10.1016/j.jmaa.2012.05.066
[12] He, J.-H.; Elagan, S. K.; Li, Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Physics Letters A, 376, 4, 257-259 (2012) · Zbl 1255.26002 · doi:10.1016/j.physleta.2011.11.030
[13] Ibrahim, R. W., Fractional complex transforms for fractional differential equations, Advances in Difference Equations, 2012 (2012) · Zbl 1377.35266
[14] He, J.-H.; Wu, X.-H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30, 3, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[15] Zhang, S., Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons and Fractals, 38, 1, 270-276 (2008) · Zbl 1142.35593 · doi:10.1016/j.chaos.2006.11.014
[16] Bekir, A.; Cevikel, A. C., New solitons and periodic solutions for nonlinear physical models in mathematical physics, Nonlinear Analysis. Real World Applications, 11, 4, 3275-3285 (2010) · Zbl 1196.35178 · doi:10.1016/j.nonrwa.2009.10.015
[17] El-Wakil, S. A.; Madkour, M. A.; Abdou, M. A., Application of Exp-function method for nonlinear evolution equations with variable coefficients, Physics Letters A, 369, 1-2, 62-69 (2007) · Zbl 1209.81097 · doi:10.1016/j.physleta.2007.04.075
[18] Zhu, S. D., Exp-function method for the Hybrid-Lattice system, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 3, 461-464 (2007)
[19] Bekir, A., Application of the exp-function method for nonlinear differential-difference equations, Applied Mathematics and Computation, 215, 11, 4049-4053 (2010) · Zbl 1185.35312 · doi:10.1016/j.amc.2009.12.003
[20] Dai, C. Q.; Chen, J. L., New analytic solutions of stochastic coupled KdV equations, Chaos, Solitons & Fractals, 42, 4, 2200-2207 (2009) · Zbl 1198.35292 · doi:10.1016/j.chaos.2009.03.157
[21] Caputo, M., Linear models of dissipation whose Q is almost frequency independent II, Geophysical Journal International, 13, 5, 529-539 (1967)
[22] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives (1993), Switzerland: Gordon and Breach Science Publishers, Switzerland · Zbl 0818.26003
[23] Jumarie, G., Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results, Computers & Mathematics with Applications, 51, 9-10, 1367-1376 (2006) · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[24] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Applied Mathematics Letters, 22, 3, 378-385 (2009) · Zbl 1171.26305 · doi:10.1016/j.aml.2008.06.003
[25] Li, Z.-B.; He, J.-H., Fractional complex transform for fractional differential equations, Mathematical & Computational Applications, 15, 5, 970-973 (2010) · Zbl 1215.35164
[26] Li, Z.-B.; He, J.-H., Application of the fractional complex transform to fractional differential equations, Nonlinear Science Letters A, 2, 121-126 (2011)
[27] He, J.-H.; Abdou, M. A., New periodic solutions for nonlinear evolution equations using exp-function method, Chaos, Solitons & Fractals, 34, 5, 1421-1429 (2007) · Zbl 1152.35441 · doi:10.1016/j.chaos.2006.05.072
[28] Ebaid, A., Exact solitary wave solutions for some nonlinear evolution equations via exp-function method, Physics Letters A, 365, 3, 213-219 (2007) · Zbl 1203.35213 · doi:10.1016/j.physleta.2007.01.009
[29] Bekir, A., The exp-function method for Ostrovsky equation, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 6, 735-739 (2009)
[30] El-Sayed, A. M. A.; Rida, S. Z.; Arafa, A. A. M., Exact solutions of fractional-order biological population model, Communications in Theoretical Physics, 52, 6, 992-996 (2009) · Zbl 1184.92038 · doi:10.1088/0253-6102/52/6/04
[31] Lu, B., Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Physics Letters A, 376, 28-29, 2045-2048 (2012) · Zbl 1266.35139 · doi:10.1016/j.physleta.2012.05.013
[32] Inc, M., The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, Journal of Mathematical Analysis and Applications, 345, 1, 476-484 (2008) · Zbl 1146.35304 · doi:10.1016/j.jmaa.2008.04.007
[33] Jafari, H.; Tajadodi, H.; Kadkhoda, N.; Baleanu, D., Fractional subequation method for Cahn-Hilliard and Klein-Gordon equations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1308.35322
[34] Choo, S. M.; Chung, S. K.; Lee, Y. J., A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Applied Numerical Mathematics, 51, 2-3, 207-219 (2004) · Zbl 1112.65078 · doi:10.1016/j.apnum.2004.02.006
[35] Kim, J., A numerical method for the Cahn-Hilliard equation with a variable mobility, Communications in Nonlinear Science and Numerical Simulation, 12, 8, 1560-1571 (2007) · Zbl 1118.35049 · doi:10.1016/j.cnsns.2006.02.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.