Ahmed, Fatima N.; Ahmad, Rokiah Rozita; Din, Ummul Khair Salma; Noorani, Mohd Salmi Md Oscillation criteria for linear neutral delay differential equations of first order. (English) Zbl 1298.34121 Abstr. Appl. Anal. 2013, Article ID 281581, 5 p. (2013). Summary: Some new sufficient conditions for oscillation of all solutions of first-order linear neutral delay differential equations are obtained. Our new results improve many well-known results in the literature. Some examples are inserted to illustrate our results. MSC: 34K11 Oscillation theory of functional-differential equations 34K06 Linear functional-differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ladas, G.; Sficas, Y. G., Oscillations of neutral delay differential equations, Canadian Mathematical Bulletin, 29, 4, 438-445 (1986) · Zbl 0566.34054 · doi:10.4153/CMB-1986-069-2 [2] Chuanxi, Q.; Ladas, G., Oscillations of first-order neutral equations with variable coefficients, Monatshefte für Mathematik, 109, 2, 103-111 (1990) · Zbl 0713.34071 · doi:10.1007/BF01302930 [3] Ruan, S. G., Oscillations for first order neutral differential equations with variable coefficients, Bulletin of the Australian Mathematical Society, 43, 1, 147-152 (1991) · Zbl 0719.34135 · doi:10.1017/S0004972700028872 [4] Elabbasy, E. M.; Saker, S. H., Oscillation of delay differential equation with several positive and negative coefficients, Discussiones Mathematicae, 23, 39-52 (2003) · Zbl 1060.34035 · doi:10.7151/dmdico.1045 [5] Kulenović, M. R. S.; Ladas, G.; Meimaridou, A., Necessary and sufficient condition for oscillations of neutral differential equations, Australian Mathematical Society Journal B, 28, 3, 362-375 (1987) · Zbl 0616.34064 · doi:10.1017/S0334270000005452 [6] Karpuz, B.; Öcalan, O., Oscillation criteria for some classes of linear delay differential equations of first-order, Bulletin of the Institute of Mathematics. Academia Sinica, 3, 2, 293-314 (2008) · Zbl 1161.34034 [7] Al-Amri, I. R., On the oscillation of first-order neutral delay differential equations with real coefficients, International Journal of Mathematics and Mathematical Sciences, 29, 4, 245-249 (2002) · Zbl 1005.34058 · doi:10.1155/S0161171202004180 [8] Yu, J. S.; Wang, Z.; Qian, C. X., Oscillation of neutral delay differential equations, Bulletin of the Australian Mathematical Society, 45, 2, 195-200 (1992) · Zbl 0729.34052 · doi:10.1017/S0004972700030057 [9] Jaroš, J., On characterization of oscillations in first-order linear neutral differential equations, Funkcialaj Ekvacioj, 34, 2, 331-342 (1991) · Zbl 0749.34041 [10] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillations of first-order neutral delay differential equations, Journal of Mathematical Analysis and Applications, 120, 2, 510-520 (1986) · Zbl 0566.34056 · doi:10.1016/0022-247X(86)90172-1 [11] Győri, I.; Ladas, G., Oscillation Theory of Delay Differential Equations. Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs (1991), New York, NY, USA: The Clarendon Press, New York, NY, USA · Zbl 0780.34048 [12] Kubiaczyk, I.; Saker, S. H., Oscillation of solutions to neutral delay differential equations, Mathematica Slovaca, 52, 3, 343-359 (2002) · Zbl 1019.34067 [13] Driver, R. D., A mixed neutral system, Nonlinear Analysis. Theory, Methods & Applications, 8, 2, 155-158 (1984) · Zbl 0553.34042 · doi:10.1016/0362-546X(84)90066-X [14] Elabbasy, E. M.; Saker, S. H., Oscillation of first order neutral delay differential equations, Kyungpook Mathematical Journal, 41, 2, 311-321 (2001) · Zbl 1014.34057 [15] Farrell, K.; Grove, E. A.; Ladas, G., Neutral delay differential equations with positive and negative coefficients, Applicable Analysis, 27, 1-3, 181-197 (1988) · Zbl 0618.34063 · doi:10.1080/00036818808839732 [16] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Applicable Analysis, 22, 1, 1-19 (1986) · Zbl 0566.34057 · doi:10.1080/00036818608839602 [17] Hale, J. K., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA · Zbl 0352.34001 [18] Yu, J. S.; Chen, M.-P.; Zhang, H., Oscillation and nonoscillation in neutral equations with integrable coefficients, Computers & Mathematics with Applications, 35, 6, 65-71 (1998) · Zbl 0909.34068 · doi:10.1016/S0898-1221(98)00019-4 [19] Zhang, B. G., Oscillation of first order neutral functional-differential equations, Journal of Mathematical Analysis and Applications, 139, 2, 311-318 (1989) · Zbl 0683.34037 · doi:10.1016/0022-247X(89)90110-8 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.