Giannelli, Carlotta; Jüttler, Bert; Speleers, Hendrik Strongly stable bases for adaptively refined multilevel spline spaces. (English) Zbl 1298.41010 Adv. Comput. Math. 40, No. 2, 459-490 (2014). Summary: The problem of constructing a normalized hierarchical basis for adaptively refined spline spaces is addressed. Multilevel representations are defined in terms of a hierarchy of basis functions, reflecting different levels of refinement. When the hierarchical model is constructed by considering an underlying sequence of bases \(\{\Gamma^\ell\}_{\ell=0,\dots,N-1}\) with properties analogous to classical tensor-product B-splines, we can define a set of locally supported basis functions that form a partition of unity and possess the property of coefficient preservation, i.e., they preserve the coefficients of functions represented with respect to one of the bases \(\Gamma^\ell\). Our construction relies on a certain truncation procedure, which eliminates the contributions of functions from finer levels in the hierarchy to coarser level ones. Consequently, the support of the original basis functions defined on coarse grids is possibly reduced according to finer levels in the hierarchy. This truncation mechanism not only decreases the overlapping of basis supports, but it also guarantees strong stability of the construction. In addition to presenting the theory for the general framework, we apply it to hierarchically refined tensor-product spline spaces, under certain reasonable assumptions on the given knot configuration. Cited in 3 ReviewsCited in 75 Documents MSC: 41A15 Spline approximation 65D07 Numerical computation using splines 65D17 Computer-aided design (modeling of curves and surfaces) Keywords:hierarchical splines; truncated hierarchical basis; partition of unity; local refinement; stability Software:ISOGAT × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229-263 (2010) · Zbl 1227.74123 · doi:10.1016/j.cma.2009.02.036 [2] de Boor, C.: A Practical Guide to Splines. (revised ed.) Springer (2001) · Zbl 0987.65015 [3] de Boor, C., Höllig, K., Riemenschneider, S.: Box Splines. Springer-Verlag, New York (1993) · Zbl 0814.41012 · doi:10.1007/978-1-4757-2244-4 [4] Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333-354 (2005) · Zbl 1085.41002 · doi:10.1007/s00211-005-0613-6 [5] Dæhlen, M., Lyche, T., Mørken, K., Schneider, R., Seidel, H.P.: Multiresolution analysis over triangles, based on quadratic Hermite interpolation. J. Comput. Appl. Math. 119, 97-114 (2000) · Zbl 0962.65119 · doi:10.1016/S0377-0427(00)00373-3 [6] Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331-356 (2013) · Zbl 1264.41011 · doi:10.1016/j.cagd.2012.12.005 [7] Dörfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199, 264-275 (2010) · Zbl 1227.74125 · doi:10.1016/j.cma.2008.07.012 [8] Farouki, R.T., Goodman, T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65, 1553-1566 (1996) · Zbl 0853.65051 · doi:10.1090/S0025-5718-96-00759-4 [9] Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205-212 (1988) · doi:10.1145/378456.378512 [10] Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485-498 (2012) · Zbl 1252.65030 · doi:10.1016/j.cagd.2012.03.025 [11] Greville, TNE; Shisha, O. (ed.), On the normalisation of the B-splines and the location of the nodes for the case of unequally spaced knots, 286-290 (1967), New York [12] Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008 [13] Kleiss, S.K., Jüttler, B., Zulehner, W.: Enhancing isogeometric analysis by a finite element-based local refinement strategy. Comput. Methods Appl. Mech. Eng. 213-216, 168-182 (2012) · Zbl 1243.65139 · doi:10.1016/j.cma.2011.11.013 [14] Kraft, R.; Méhauté, A. (ed.); Rabut, C. (ed.); Schumaker, LL (ed.), Adaptive and linearly independent multilevel B-splines, 209-218 (1997), Nashville · Zbl 0937.65014 [15] Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen. Ph.D. thesis, Universität Stuttgart (1998) · Zbl 0903.68195 [16] Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations. Cambridge University Press, Cambridge (2007) · Zbl 1185.41001 · doi:10.1017/CBO9780511721588 [17] Lyche, T.; Scherer, K.; Nürnberger, G. (ed.); Schmidt, JW (ed.); Walz, G. (ed.), On the sup-norm condition number of the multivariate triangular Bernstein basis, 141-151 (1997), Basel · Zbl 0992.41009 · doi:10.1007/978-3-0348-8871-4_12 [18] Nguyen-Thanh, N., Nguyen-Xuan, H., Bordas, S.P.A., Rabczuk, T.: Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Eng. 200, 1892-1908 (2011) · Zbl 1228.74091 · doi:10.1016/j.cma.2011.01.018 [19] Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997) · Zbl 0868.68106 · doi:10.1007/978-3-642-59223-2 [20] Prautzsch, H.: The location of the control points in the case of box splines. IMA J. Numer. Anal. 6, 43-49 (1986) · Zbl 0627.65009 · doi:10.1093/imanum/6.1.43 [21] Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-spline Techniques. Springer, Berlin (2002) · Zbl 1033.65008 · doi:10.1007/978-3-662-04919-8 [22] Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007) · Zbl 1123.41008 · doi:10.1017/CBO9780511618994 [23] Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Des. 26, 174-191 (2009) · Zbl 1205.65056 · doi:10.1016/j.cagd.2008.05.001 [24] Speleers, H., Dierckx, P., Vandewalle, S.: On the local approximation power of quasi-hierarchical Powell-Sabin splines. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 419-433. Lecture Notes in Computer Science 5862, (2010) · Zbl 1274.65020 [25] Vuong, A.V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554-3567 (2011) · Zbl 1239.65013 · doi:10.1016/j.cma.2011.09.004 [26] Wu, M., Xu, J., Wang, R., Yang, Z.: Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions. Comput. Aided Geom. Des. 29, 499-509 (2012) · Zbl 1259.65022 · doi:10.1016/j.cagd.2012.03.024 [27] Yvart, A., Hahmann, S.: Hierarchical triangular splines. ACM Trans. Graph. 24, 1374-1391 (2005) · doi:10.1145/1095878.1095885 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.