Jakszto, Marian On some modes of convergence in spaces with the weak Banach-Saks property. (English) Zbl 1298.46028 Real Anal. Exch. 38(2012-2013), No. 2, 487-492 (2013). A typical result of the paper is the following: Theorem. Let \(F\) be a reflexive Banach function space (on a complete \(\sigma\)-finite measure space) with the weak Banach-Saks property and \((f_n)\) be a bounded sequence in \(F\) converging a.e. to \(f\), then \(f\in F\) and \((f_n)\) converges weakly to \(f\). Reviewer: Hans Weber (Udine) Cited in 1 Document MSC: 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 28A20 Measurable and nonmeasurable functions, sequences of measurable functions, modes of convergence Keywords:weak Banach-Saks property; weak convergence; convergence a.e. PDF BibTeX XML Cite \textit{M. Jakszto}, Real Anal. Exch. 38, No. 2, 487--492 (2013; Zbl 1298.46028) Full Text: DOI Euclid