×

zbMATH — the first resource for mathematics

Invariant measure under the affine group over \(\mathbb Z\). (English) Zbl 1298.52016
In this paper, the author studies invariants for equidissectability of rational polyhedra (finite unions of rational simplices) under piecewise affine unimodular transformations, that is, mappings in \(\mathcal{G}_n = \mathrm{GL}(n,\mathbb{Z}) \ltimes \mathbb{Z}^n\). He constructs a family \(\lambda_0,\ldots,\lambda_n\) of functions, of which \(\lambda_d\) is called \(d\)-dimensional rational measure, which are exactly characterized by six properties – invariance under \(\mathcal{G}_n\), valuation, conservatism under embedding in higher dimensions, inductive calculation for pyramids, normalization (by unit cubes) and proportionality to corresponding Lebesgue measure in fixed subspaces.

MSC:
52B45 Dissections and valuations (Hilbert’s third problem, etc.)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
52A38 Length, area, volume and convex sets (aspects of convex geometry)
51M25 Length, area and volume in real or complex geometry
20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)
20H25 Other matrix groups over rings
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/s00032-011-0166-3 · Zbl 1269.46041 · doi:10.1007/s00032-011-0166-3
[2] Ergodic Theory Dyn. Syst. 22 pp 899– (2002)
[3] DOI: 10.3934/dcds.2008.21.537 · Zbl 1154.28007 · doi:10.3934/dcds.2008.21.537
[4] DOI: 10.1016/0001-8708(88)90006-0 · Zbl 0678.06008 · doi:10.1016/0001-8708(88)90006-0
[5] J. Algebraic Geometry 5 pp 751– (1996)
[6] Geometric Measure Theory (1969) · Zbl 0176.00801
[7] Gruber, Handbook of Convex Geometry pp 933– (1993)
[8] Combinatorial Convexity and Algebraic Geometry (1996) · Zbl 0869.52001
[9] Geometry of Numbers (1969)
[10] CR Acad. Sci. Paris Sér. A 254 pp 616– (1962)
[11] Grundlehren der Mathematischen Wissenschaften (2007)
[12] DOI: 10.1070/IM1983v021n02ABEH001790 · Zbl 0536.14008 · doi:10.1070/IM1983v021n02ABEH001790
[13] J. London Math. Soc. 30 pp 53– (1984)
[14] DOI: 10.1007/BF01389917 · Zbl 0415.28008 · doi:10.1007/BF01389917
[15] Measure Theory (2011)
[16] Canad. J. Math. 60 pp 975– (2008) · Zbl 1158.46039 · doi:10.4153/CJM-2008-043-1
[17] A Survey of Modern Algebra (1953)
[18] J. Reine Angew. Math. 358 pp 202– (1985)
[19] Graduate Studies in Mathematics (2002)
[20] DOI: 10.1090/S0002-9947-97-01701-7 · Zbl 0867.14005 · doi:10.1090/S0002-9947-97-01701-7
[21] Lectures on Polyhedral Topology (1968) · Zbl 0182.26203
[22] DOI: 10.4213/im471 · doi:10.4213/im471
[23] Schauder Bases in Banach Spaces of Continuous Functions (1982) · Zbl 0478.46014
[24] DOI: 10.1007/s00010-011-0102-1 · Zbl 1329.28029 · doi:10.1007/s00010-011-0102-1
[25] Commun. Algebra 36 pp 2849– (2009)
[26] Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties (1988)
[27] DOI: 10.1016/j.apal.2011.06.026 · Zbl 1248.03043 · doi:10.1016/j.apal.2011.06.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.