zbMATH — the first resource for mathematics

Multi-sample Rényi test statistics. (English) Zbl 1298.62035
Summary: This paper focuses on testing composite hypotheses about parameters of \(s\) independent samples of different sizes. With this purpose, it introduces test statistics based on the family of Rényi divergences between likelihoods. The asymptotic distributions of the proposed test statistics and of the likelihood ratio statistic are derived under standard regularity assumptions. An application to test the homogeneity of variances in data from families belonging to different populations is described and, under this setup, a simulation experiment compares the small sample performance of the likelihood ratio test and some members of the Rényi family of tests. The experiment indicates that some of the Rényi tests perform better under null hypothesis.
62F03 Parametric hypothesis testing
Full Text: DOI Euclid
[1] Bhandary, M. and Alam, M. K. (2000). Test for the equality of intraclass correlation coefficients under unequal family sizes for several populations., Communications in Statistics. Theory and Methods 29 755-768. · Zbl 0992.62052 · doi:10.1080/03610920008832513
[2] Csiszár, I. (1963). Eine Informationstheoretische Ungleidung und ihre Anwendung auf den Bewis del Ergodizität on Markhoffschen Ketten. In, Publications of the Mathematical Institute, Hungarian Academy of Sciences 8 85-108. Budapest, Hungary. · Zbl 0124.08703
[3] Ferguson, T. S. (1988)., A Course in Large Sample Theory . Chapman & Hall, New York. · Zbl 0871.62002
[4] Hobza, T., Molina, I. and Morales, D. (2003). Likelihood divergence statistics for testing hypotheses in familial data., Communications in Statistics. Theory and Methods 32 415-434. · Zbl 1024.62007 · doi:10.1081/STA-120018193
[5] Kullback, S. (1959)., Information Theory and Statistics . Wiley, New York. · Zbl 0088.10406
[6] Kupperman, M. (1957). Further applications of information theory to multivariate analysis and statistical inference. Ph.D. dissertation, The George Washington, University.
[7] Lehmann, E. L. (1999)., Elements of Large-Sample Theory . Springer, New York. · Zbl 0914.62001
[8] Liese, F. and Vajda, I. (1987)., Convex Statistical Distances . Teubner, Leipzig. · Zbl 0656.62004
[9] Morales, D., Pardo, L. and Pardo, M. C. (2001). Likelihood divergence statistics for testing hypotheses about multiple populations., Communications in Statistics. Simulation and Computation 30 867-884. · Zbl 1008.62536 · doi:10.1081/SAC-100107785
[10] Morales, D., Pardo, L. and Vajda, I. (1997). Some new statistics for testing composite hypotheses in parametric models., Journal of Multivariate Analysis 62 137-168. · Zbl 0877.62020 · doi:10.1006/jmva.1997.1680
[11] Morales, D., Pardo, L. and Vajda, I. (2000). Rényi statistics in directed families of exponential experiments., Statistics 34 151-174. · Zbl 0998.62003 · doi:10.1080/02331880008802324
[12] Morales, D., Pardo, L., Pardo, M. C. and Vajda, I. (2004). Rényi statistics for testing composite hypotheses in general exponential models., Statistics 38 133-147. · doi:10.1080/02331880310001634647
[13] Rényi, A. (1961). On measures of entropy and information. In, Fourth Berkeley Symposium on Mathematics, Statistics and Probability 1 547-561. Univ. California Press, Berkeley. · Zbl 0106.33001
[14] Salicrú, M., Menéndez, M. L., Morales, D. and Pardo, L. (1994). On the applications of divergence type measures in testing statistical hypotheses., Journal of Multivariate Analysis 51 372-391. · Zbl 0815.62003 · doi:10.1006/jmva.1994.1068
[15] Serfling, R. J. (1980)., Approximation Theorems of Mathematical Statistics . Wiley, New York. · Zbl 0538.62002
[16] Srivastava, M. S. (1984). Estimation of interclass correlations in familial data., Biometrika 71 177-185. JSTOR: · Zbl 0532.62092 · doi:10.1093/biomet/71.1.177 · links.jstor.org
[17] Srivastava, M. S. and Katapa, R. S. (1986). Comparison of estimators of interclass and intraclass correlations from familial data., La Revue Canadienne de Statistique 14 29-42. JSTOR: · Zbl 0595.62115 · doi:10.2307/3315034 · links.jstor.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.