×

zbMATH — the first resource for mathematics

On stepwise control of the generalized familywise error rate. (English) Zbl 1298.62128
Summary: A classical approach for dealing with a multiple testing problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of at least one false rejection. In many applications, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of a procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of \(k\) or more false rejections, which is called the \(k\)-FWER. In this article, a unified approach is presented for deriving the \(k\)-FWER controlling procedures. We first generalize the well-known closure principle in the context of the FWER to the case of controlling the \(k\)-FWER. Then, we discuss how to derive the \(k\)-FWER controlling stepup procedures based on marginal \(p\)-values using this principle. We show that, under certain conditions, generalized closed testing procedures can be reduced to stepup procedures, and any stepup procedure is equivalent to a generalized closed testing procedure. Finally, we generalize the well-known Hommel procedure in two directions, and show that any generalized Hommel procedure is equivalent to a generalized closed testing procedure with the same critical values.

MSC:
62J15 Paired and multiple comparisons; multiple testing
62G10 Nonparametric hypothesis testing
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing., J. R. Statist. Soc. B , 57 , 289-300. · Zbl 0809.62014
[2] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency., Ann. Statist. , 29 , 1165-1188. · Zbl 1041.62061
[3] Bernhard, G., Klein, M. and Hommel, G. (2004). Global and multiple test procedures using ordered p-values - A review., Statist. Pap. , 45 , 1-14. · Zbl 1085.62017
[4] Calian, V., Li, D., and Hsu, J. (2008). Partitioning to uncover conditions for permutation to control multiple testing error rate., Biometrical Journal , 50 , 756-766.
[5] Dudoit, S. and van der Laan, M. (2008)., Multiple Testing Procedures with Applications to Genomics. Springer, New York. · Zbl 1261.62014
[6] Dudoit, S., van der Laan, M. and Pollard, K. (2004). Multiple testing. Part I. Single-step procedures for control of general type I error rates., Statist. Appl. Gen. Mol. Biol. , 3(1) , Article 13. · Zbl 1166.62338
[7] Falk, R. W. (1989). Hommel’s Bonferroni-type inequality for unequally spaced levels., Biometrika , 76 , 189-191. · Zbl 0678.62071
[8] Finner, H. and Strassburger, K. (2002). The partititoning principle: a powerful tool in multiple decision theory., Ann. Statist. , 30 1194-1213. · Zbl 1029.62064
[9] k -FWER control without multiplicity correction, with application to detection of genetic determinants of multiple sclerosis in Italian twins. Biometrics , · Zbl 1217.62165
[10] Grechanovsky, E. and Hochberg, Y. (1999). Closed procedures are better and often admit a shortcut., J. Statist. Plann. Inf. , 76 , 79-91. · Zbl 1054.62507
[11] Guo, W. and Romano, J. (2007). A generalized Sidak-Holm procedure and control of generalized error rates under independence., Statist. Appl. Gen. Mol. Biol. , 6(1) , Article 3. · Zbl 1166.62316
[12] Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance., Biometrika , 75 , 800-802. · Zbl 0661.62067
[13] Holm, S. (1979). A simple sequentially rejective multiple test procedure., Scand. J. Statist. , 6 65-70. · Zbl 0402.62058
[14] Hommel, G. (1986). Multiple test procedures for arbitrary dependence structures., Metrika , 33 , 321-336. · Zbl 0603.62026
[15] Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test., Biometrika , 75 , 383-386. · Zbl 0639.62025
[16] Hommel, G. (1989). A comparison of two modified Bonferroni procedures., Biometrika , 76 , 624-625. · Zbl 0676.62028
[17] Hommel, G. and Hoffmann, T. (1987). Controlled uncertainty. In, Multiple Hypothesis Testing (eds P. Bauer, G. Hommel, and E. Sonnemann), 154-162. Springer, Heidelberg.
[18] Huang, Y. and Hsu, J. (2007). Hochberg’s step-up method : cutting corners off Holm’s step-down method., Biometrika , 94 , 965-975. · Zbl 1156.62049
[19] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. Part I. Multivariate totally positive distributions., J. Mult. Anal. , 10 , 467-498. · Zbl 0469.60006
[20] Korn, E., Troendle, J., McShane, L. and Simon, R. (2004). Controlling the number of false discoveries: Application to high-dimensional genomic data., J. Statist. Plann. Inf. , 124 , 379-398. · Zbl 1074.62070
[21] Lehmann, E. L. and Romano, J. P. (2005). Generalizations of the familywise error rate., Ann. Statist. , 33 , 1138-1154. · Zbl 1072.62060
[22] Liu, W. (1996). Multiple tests of a non-hierarchical family of hypotheses., J. R. Statist. Soc. B , 58 , 455-461. · Zbl 0853.62054
[23] Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance., Biometrika , 63 , 655-660. · Zbl 0353.62037
[24] R ö hmel, J. and Streitberg, B. (1987). Zur Konstruktion globaler Tests. EDV Med. Biol. , 18 , 7-11.
[25] Romano, J. P. and Shaikh, A. M. (2006). Stepup procedures for control of generalizations of the familywise error rate., Ann. Statist. , 34 , 1850-1873. · Zbl 1246.62172
[26] Romano, J. P. and Wolf, M. (2007). Control of generalized error rates in multiple testing., Ann. Statist. , 35 , 1378-1408. · Zbl 1127.62063
[27] Rüger, B. (1978). Das maximale Signifikanzniveau des Tests “Lehne, H 0 ab, wenn k unter n gegebenen Tests zur Ablehnung führen”. Metrika , 25 , 171-178. · Zbl 0389.62013
[28] Sarkar, S. K. (1998). Some probability inequalities for ordered, MTP 2 random variables: a proof of the Simes conjecture. Ann. Statist. , 26 , 494-504. · Zbl 0929.62065
[29] Sarkar, S. K. (2007). Stepup procedures controlling generalized FWER and generalized FDR., Ann. Statist. 35 2405-2420. · Zbl 1129.62066
[30] Sarkar, S. K. (2008). Generalizing Simes’ test and Hochberg’s stepup procedure., Ann. Statist. 36 , 337-363. · Zbl 1247.62193
[31] Sarkar, S. K. and Guo, W. (2009a). On a generalized false discovery rate., Ann. Statist. , 37 , 337-363. · Zbl 1161.62041
[32] Sarkar, S. K. and Guo, W. (2009b). Procedures controlling generalized false discovery rate., Statistica Sinica , · Zbl 1161.62041
[33] Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance., Biometrika , 73 , 751-754. · Zbl 0613.62067
[34] Stefansson, G., Kim, W. and Hsu, J. C. (1988). On confidence sets in multiple comparisons. In Gupta, S. S. and Berger, J. O. (eds.), Statistical Decision Theory and Related Topics IV , Vol. 2, 89-104. Springer-Verlag, New York. · Zbl 0685.62034
[35] van der Laan, M., Birkner, M. and Hubbard, A. (2005). Resampling based multiple testing procedure controlling tail probability of the proportion of false positives., Statist. Appl. Gen. Mol. Biol. , 4(1) , Article 29. · Zbl 1108.62303
[36] van der Laan, M., Dudoit, S. and Pollard, K. (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives., Statist. Appl. Gen. Mol. Biol. , 3(1) , Article 15. · Zbl 1166.62379
[37] Xu, H. and Hsu, J. (2007). Using the Partitioning Principle to control the generalized Family Error Rate., Biometrical Journal , 49 , 52-67.
[38] Yekutieli, D. (2008). False discovery rate control for non-positively regression dependent test statistics., Journal of Statistical Planning and Inference , 138 , 405-415. · Zbl 1138.62040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.