zbMATH — the first resource for mathematics

Non-Markov dissipative dynamics of electron transfer in a photosynthetic reaction center. (English. Russian original) Zbl 1298.81134
Theor. Math. Phys. 178, No. 2, 257-264 (2014); translation from Teor. Mat. Fiz. 178, No. 2, 295-304 (2014).
Summary: We consider the dissipative dynamics of electron transfer in the photosynthetic reaction center of purple bacteria and propose a model where the transition between electron states arises only due to the interaction between a chromophore system and the protein environment and is not accompanied by the motion of nuclei of the reaction subsystem. We establish applicability conditions for the Markov approximation in the framework of this model and show that these conditions are not necessarily satisfied in the protein medium. We represent the spectral function of the “system + heat bath” interaction in the form of one or several Gaussian functions to study specific characteristics of non-Markov dynamics of the final state population, the presence of an induction period and vibrations. The consistency of the computational results obtained for non-Markov dynamics with experimental data confirms the correctness of the proposed approach.

81S22 Open systems, reduced dynamics, master equations, decoherence
82B30 Statistical thermodynamics
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics
92C40 Biochemistry, molecular biology
Full Text: DOI
[1] H. Lee, Y.-C. Cheng, and G. R. Fleming, Science, 316, 1462–1465 (2007). · doi:10.1126/science.1142188
[2] I. Kassal and A. Aspuru-Guzik, New J. Phys., 14, 053041 (2012). · doi:10.1088/1367-2630/14/5/053041
[3] T. Ritz, S. Park, and K. Schulten, J. Phys. Chem. B, 105, 8259–8267 (2001). · doi:10.1021/jp011032r
[4] S. Nakajima, Progr. Theoret. Phys., 20, 948–959 (1958). · Zbl 0084.21505 · doi:10.1143/PTP.20.948
[5] R. Zwanzig, J. Chem. Phys., 33, 1338–1341 (1960). · doi:10.1063/1.1731409
[6] V. May and O. Kuhn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley, Berlin (2011).
[7] U. Weiss, Quantum Dissipative Systems (Ser. Mod. Cond. Mat. Phys., Vol. 10), World Scientific, Singapore (1999).
[8] A. G. Redfield, Adv. Magn. Res., 1, 1–32 (1965). · doi:10.1016/B978-1-4832-3114-3.50007-6
[9] K. Blum, Density Matrix Theory and Applications, Plenum, New York (1981). · Zbl 1234.81008
[10] D. Egorova and W. Domcke, J. Photochem. Photobiol. A, 166, 19–31 (2004). · doi:10.1016/j.jphotochem.2004.04.034
[11] V. I. Novoderezhkin, A. G. Yakovlev, R. van Grondelle, and V. A. Shuvalov, J. Phys. Chem. B, 108, 7445–7457 (2004). · doi:10.1021/jp0373346
[12] I. O. Glebov and V. V. Eremin, Biophysics, 57, 442–449 (2012). · doi:10.1134/S0006350912040069
[13] D. Egorova, A. Kühl, and W. Domcke, Chem. Phys., 268, 105–120 (2004). · doi:10.1016/S0301-0104(01)00293-2
[14] A. G. Yakovlev, A. Y. Shkuropatov, and V. A. Shuvalov, FEBS Lett., 446, 209–212 (2000). · doi:10.1016/S0014-5793(00)01081-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.