Sliding subspace design based on linear matrix inequalities. (English) Zbl 1298.93110

Summary: In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler’s lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.


93B12 Variable structure systems
93C05 Linear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
51M16 Inequalities and extremum problems in real or complex geometry
Full Text: Link


[1] Abidi, K., Xu, J.-X., Xinghuo, Y.: On the discrete-time integral sliding-mode control. IEEE Trans. Automat. Control 52 (2007), 4, 709-715. · Zbl 1366.93091
[2] Ackermann, J., Utkin, V.: Sliding mode control design based on Ackermann’s formula. IEEE Trans. Automat. Control 43 (1998), 2, 234-237. · Zbl 0904.93004
[3] Arezelier, D., Angulo, M., Bernussou, J.: Sliding surface design by quadratic stabilization and pole placement. Proc. 4th European Control Conference, 1997.
[4] Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V.: Linear matrix inequalities in system and control theory. Stud. Appl. Math. 15 (1994). · Zbl 0816.93004
[5] Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Automat. Control 51 (2006), 5, 853-858. · Zbl 1366.93094
[6] Chang, J.-L.: Discrete sliding mode control of MIMO linear systems. Asian J. Control 4 (2002), 2, 217-222.
[7] Chen, Y.-P., Chang, J.-L.: A new method for constructing sliding surfaces of linear time-invariant systems. Internat. J. System Sci. 31 (2000), 4, 417-420. · Zbl 1080.93526
[8] Choi, H.: On the existence of linear sliding surface for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 37 (1999), 1707-1715. · Zbl 0931.93014
[9] Choi, H.: LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems. IEEE Trans. Automat. Control 52 (2007), 4, 736-742. · Zbl 1366.93096
[10] Cruz-Zavala, E., Moreno, J., Fridman, L.: Uniform sliding mode controllers and uniform sliding surfaces. IMA J. Math. Control Inform. 29 (2012), 4, 491-505. · Zbl 1256.93032
[11] Oliveira, M. C. De, Skelton, R. E.: Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control. Springer, Berlin 1994. · Zbl 0997.93086
[12] Dorling, C. M., Zinober, A. S. I.: Two approaches to hyperplane desing in multivariable variable structure control systems. Internat. J. Control 44 (1986), 1, 65-82. · Zbl 0596.93036
[13] Dorling, C. M., Zinober, A. S. I.: Robust hyperplane desing in multivariable variable structure control systems. Internat. J. Control 48 (1988), 5, 2043-2054. · Zbl 0663.93029
[14] Draženović, B., Milosavljević, C., Veselić, B., Gligić, V.: Comprehensive approach to sliding subspace design in linear time invariant systems. IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478.
[15] Edwards, C.: Sliding Mode Control: Theory and Applications. Taylor and Francis, London 1998.
[16] Edwards, C.: A practical method for the design of sliding mode controllers using linear matrix inequalities. Automatica 40 (2004), 10, 1761-1769. · Zbl 1079.93014
[17] Fridman, L., Moreno, J., Iriarte, R.: Sliding Modes After the First Decade of the 21st Century. Springer, Berlin 2011.
[18] Hermann, C., Spurgeon, S. K., Edwards, C.: A robust sliding mode output tracking control for a class of relative degree zero and non-minimum phase plants: A chemical process application. Internat. J. Control 72 (2001), 1194-1209. · Zbl 1027.93027
[19] Huang, J. Y., Yeung, K. S.: Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann’s formula. IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20.
[20] Hung, Y. S., Macfarlan, A. G. J.: Multivariable Feedback: A Quasi-Classical Approach. Volume 40. Springer-Verlag, Berlin 1982. · Zbl 0498.93004
[21] Kautsky, J., Nichols, N. K., Dooren, P. Van: Robust pole assignment in linear state feedbacks. Internat. J. Control 41 (1985), 2, 1129-1155. · Zbl 0567.93036
[22] Kočvara, M., Sting, M.: Penbmi, version 2.1. www.penopt.com, 2008.
[23] Mehta, A. J., Bandyopadhyay, B., Inoue, A.: Reduced-order observer design for servo system using duality to discrete-time sliding-surface design. IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800.
[24] Pan, Y., Kumar, K. D., Liu, G.: Reduced-order design of high-order sliding mode control system. Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078. · Zbl 1237.93037
[25] Tanaka, K., Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. John Wiley and Sons, New York 2001.
[26] Utkin, U.: Sliding Modes in Control and Optimization. Springer, Berlin 1992. · Zbl 0748.93044
[27] Utkin, V., Shi, J.: Integral sliding mode in systems operating under uncertainty conditions. Conference on Decision and Control 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.