zbMATH — the first resource for mathematics

Adyan-Lisenok groups and (U) condition. (English. Russian original) Zbl 1299.20055
J. Contemp. Math. Anal., Armen. Acad. Sci. 43, No. 5, 265-273 (2008); translation from Izv. Nats. Akad. Nauk Armen., Mat. 43, No. 5, 13-24 (2008).
Summary: A group \(G\) possesses the property (U) with respect to \(S\) if there exists a number \(M=M(G)\) such that for each generating set \(P\) of the group \(G\) there exists an element \(t\in G\) for which \(\max_{x\in S}|t^{-1}xt|_P\leq M\). It is proved that the well-known Adyan-Lisenok groups possess the property (U). In connection with the problem on finding infinite groups with the property (U), which is stated in a joint unpublished work by D. Osin and D. Sonkin, it is shown that for any odd \(n\geq 1003\) there is a continuum set of non-isomorphic, i.e. simple groups with the property (U) in the variety of groups satisfying the identity \(x^n=1\).

20F50 Periodic groups; locally finite groups
20F05 Generators, relations, and presentations of groups
Full Text: DOI
[1] D. Osin and D. Sonkin, Uniformly Kazhdan Groups, preprint, 2006.
[2] T. Gelander and A. Zuk, ”Dependence of Kazhdan Constants on Generating Subsets”, Israel Journal of Mathematics 129, 93–99 (2002). · Zbl 0993.22003 · doi:10.1007/BF02773155
[3] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Progress in Mathematics 125 (Birkhauser Verlag, Basel, 1994). · Zbl 0826.22012
[4] A. Zuk, ”Property (T) and Kazhdan Constants for Discrete Groups”, GAFA, Geom. Funct. Anal. 13, 643–670 (2003). · Zbl 1036.22004 · doi:10.1007/s00039-003-0425-8
[5] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), preprint, 2006. · Zbl 1146.22009
[6] S. I. Adian, I. G. Lisenok, ”On Groups All Own Subgroups of Which Are Finite and Cyclic” (Russian) Izv. Ac. of Sci. of USSR, Ser. Mat. 55(5), 933–990 (1991).
[7] V. S. Atabekyan, ”On Periodic Groups of Odd Period n > 1001”, (Russian) Mat. Zametki 82(4), 495–500, (2007). · doi:10.4213/mzm3810
[8] A. Yu. Olshanskii, ”Groups of Bounded Period With Subgroups of Simple Orders” (Russian) Algebra i Logika 21(5), 553–618 (1982).
[9] V. S. Atabekyan and S. V. Ivanov, ”Two Notes on Groups of Bounded Period” (Russian) dep. VINITI USSR, 243-B87, 23 p.
[10] D.V. Osin, ”Uniform Non-Amenability of Free Burnside Groups” Arch. Math, (Basel) 88(5), 403–412 (2007). · Zbl 1173.43002 · doi:10.1007/s00013-006-2002-5
[11] S. I. Adian, The Burnside Problem and Identities in Groups (Nauka, Moscow, 1975).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.