On some Hasse principles for algebraic groups over global fields. (English) Zbl 1300.11032

Summary: We consider certain local-global principles related with some splitting problems for connected linear algebraic groups over global fields. The main tools are certain reciprocity results due to G. Prasad and A. S. Rapinchuk [Adv. Math. 207, No. 2, 646–660 (2006; Zbl 1132.20024)], G. Harder’s Hasse principle for homogeneous projective spaces of reductive groups for number fields [Jahresber. Dtsch. Math.-Ver. 70, 182–216 (1968; Zbl 0194.05701)] and their extensions to global function fields.


11E72 Galois cohomology of linear algebraic groups
14F20 Étale and other Grothendieck topologies and (co)homologies
14L15 Group schemes
14G20 Local ground fields in algebraic geometry
20G10 Cohomology theory for linear algebraic groups
Full Text: DOI Euclid


[1] A. Borel, Linear algebraic groups , 2nd ed., Graduate Texts in Mathematics, 126, Springer, New York, 1991. · Zbl 0726.20030
[2] M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), no. 1, 217-239. · Zbl 0849.12011 · doi:10.1215/S0012-7094-93-07209-2
[3] B. Conrad, The structure of solvable groups over general fields. (Preprint). · Zbl 1356.20026
[4] B. Conrad, O. Gabber and G. Prasad, Pseudo-reductive groups , New Mathematical Monographs, 17, Cambridge Univ. Press, Cambridge, 2010. · Zbl 1216.20038
[5] J.-L. Colliot-Thélène, P. Gille and R. Parimala, Arithmetic of linear algebraic groups over 2-dimensional geometric fields, Duke Math. J. 121 (2004), 285-341. · Zbl 1129.11014 · doi:10.1215/S0012-7094-04-12124-4
[6] G. Harder, Bericht über neuere Resultate der Galoiskohomologie halbeinfacher Gruppen, Jber. Deutsch. Math.-Verein. 70 (1967/1968), Heft 4, Abt. 1, 182-216. · Zbl 0194.05701
[7] G. Harder, Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III, J. Reine Angew. Math. 274/275 (1975), 125-138. · Zbl 0317.14025 · doi:10.1515/crll.1975.274-275.125
[8] M. Kneser, Strong approximation, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) , 187-196, Amer. Math. Soc., Providence, RI, 1966.
[9] R. S. Pierce, Associative algebras , Graduate Texts in Mathematics, 88, Springer, New York, 1982. · Zbl 0497.16001
[10] G. Prasad and A. S. Rapinchuk, On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, Adv. Math. 207 (2006), no. 2, 646-660. · Zbl 1132.20024 · doi:10.1016/j.aim.2006.01.001
[11] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80. · Zbl 0468.14007 · doi:10.1515/crll.1981.327.12
[12] I. Satake, Classification theory of semi-simple algebraic groups , Dekker, New York, 1971. · Zbl 0226.20037
[13] T. A. Springer, Linear algebraic groups , 2nd ed., Progress in Mathematics, 9, Birkhäuser Boston, Boston, MA, 1998. · Zbl 0927.20024
[14] W. Scharlau, Quadratic and Hermitian forms , Grundlehren der Mathematischen Wissenschaften, 270, Springer, Berlin, 1985. · Zbl 0584.10010
[15] N. Q. Thǎńg, Weak approximation, Brauer and \(R\)-equivalence in algebraic groups over arithmetical fields, J. Math. Kyoto Univ. 40 (2000), no. 2, 247-291. · Zbl 1014.20019
[16] N. Q. Thǎńg, On Galois cohomology of semisimple groups over local and global fields of positive characteristic, II, Math. Z. 270 (2012), no. 3-4, 1057-1065. · Zbl 1286.11049 · doi:10.1007/s00209-010-0840-0
[17] J. Tits, Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) , 33-62, Amer. Math. Soc., Providence, RI, 1966. · Zbl 0238.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.