×

zbMATH — the first resource for mathematics

Realization of affine type \(A\) Kirillov-Reshetikhin crystals via polytopes. (English) Zbl 1300.17012
To an affine Lie algebra \(\mathfrak{g}\), we may associate a quantum affine algebra \(U_{q}'(\mathfrak{g})\) (without derivation). Amongst the finite-dimensional irreducible modules for this quantum algebra, the class of Kirillov-Reshetikhin modules are particularly important and they have received substantial attention. As with quantized enveloping algebras of finite-dimensional semisimple Lie algebras, one of the most important methods of study is the construction of crystal bases, following Kashiwara.
The main aim of the present work is to provide a realization of crystals for Kirillov-Reshetikhin modules in type \(A_n^{(1)}\). Previous realizations involving Young tableaux and the Robinson-Schensted-Knuth correspondence ([S.-J. Kang et al., Duke Math. J. 68, No. 3, 499–607 (1992; Zbl 0774.17017)], [M. Shimozono, J. Algebr. Comb. 15, No. 2, 151–187 (2002; Zbl 1106.17305)]) are known, and the approach here is intended to complement these and provide an alternative method to compute these crystals via the polytope originally defined by E.Feigin, G. Fourier and P. Littelmann [Transform. Groups 16, No. 1, 71–89 (2011; Zbl 1237.17011)].
The construction is outlined in detail and a number of very helpful examples are provided.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bandlow, J.; Schilling, A.; Thiéry, N. M., On the uniqueness of promotion operators on tensor products of type A crystals, J. Algebraic Combin., 31, 2, 217-251, (2010) · Zbl 1228.05286
[2] Chari, V., On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. IMRN, 12, 629-654, (2001) · Zbl 0982.17004
[3] Chari, V.; Moura, A., The restricted Kirillov-Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys., 266, 2, 431-454, (2006) · Zbl 1118.17007
[4] Chari, V.; Moura, A., Kirillov-Reshetikhin modules associated to \(G_2\), (Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., vol. 442, (2007), Amer. Math. Soc. Providence, RI), 41-59 · Zbl 1232.17033
[5] Chari, V.; Pressley, A., Quantum affine algebras and their representations, (Representations of Groups, Banff, AB, 1994, CMS Conf. Proc., vol. 16, (1995), Amer. Math. Soc. Providence, RI), 59-78 · Zbl 0855.17009
[6] Chari, V.; Pressley, A., Twisted quantum affine algebras, Comm. Math. Phys., 196, 2, 461-476, (1998) · Zbl 0915.17013
[7] Feigin, E.; Fourier, G.; Littelmann, P., PBW filtration and bases for irreducible modules in type \(A_n\), Transform. Groups, 16, 1, 71-89, (2011) · Zbl 1237.17011
[8] Fourier, G.; Okado, M.; Schilling, A., Kirillov-Reshetikhin crystals for nonexceptional types, Adv. Math., 222, 3, 1080-1116, (2009) · Zbl 1239.17007
[9] Haiman, M. D., Dual equivalence with applications, including a conjecture of proctor, Discrete Math., 99, 1-3, 79-113, (1992) · Zbl 0760.05093
[10] Hatayama, G.; Kuniba, A.; Okado, M.; Takagi, T.; Tsuboi, Z., Paths, crystals and fermionic formulae, (MathPhys Odyssey, 2001, Prog. Math. Phys., vol. 23, (2002), Birkhäuser Boston Boston, MA), 205-272 · Zbl 1016.17011
[11] Hong, J.; Kang, S.-J., Introduction to quantum groups and crystal bases, Grad. Stud. Math., vol. 42, (2002), Amer. Math. Soc. Providence, RI · Zbl 1134.17007
[12] Kang, S.-J.; Kashiwara, M.; Misra, K. C.; Miwa, T.; Nakashima, T.; Nakayashiki, A., Affine crystals and vertex models, (Infinite Analysis, Part A, B, Kyoto, 1991, Adv. Ser. Math. Phys., vol. 16, (1992), World Sci. Publ. River Edge, NJ), 449-484 · Zbl 0925.17005
[13] Kang, S.-J.; Kashiwara, M.; Misra, K. C.; Miwa, T.; Nakashima, T.; Nakayashiki, A., Perfect crystals of quantum affine Lie algebras, Duke Math. J., 68, 3, 499-607, (1992) · Zbl 0774.17017
[14] Kashiwara, M., On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J., 63, 2, 465-516, (1991) · Zbl 0739.17005
[15] Kashiwara, M., Realizations of crystals, (Combinatorial and Geometric Representation Theory, Seoul, 2001, Contemp. Math., vol. 325, (2003), Amer. Math. Soc. Providence, RI), 133-139 · Zbl 1066.17006
[16] Kashiwara, M.; Nakashima, T., Crystal graphs for representations of the q-analogue of classical Lie algebras, J. Algebra, 165, 2, 295-345, (1994) · Zbl 0808.17005
[17] Kwon, J.-H., RSK correspondence and classically irreducible Kirillov-Reshetikhin crystals, J. Combin. Theory Ser. A, 120, 2, 433-452, (2013) · Zbl 1292.05270
[18] Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc., 14, 1, 145-238, (2001) · Zbl 0981.17016
[19] Nakajima, H., t-analogs of q-characters of quantum affine algebras of type \(A_n, D_n\), (Combinatorial and Geometric Representation Theory, Seoul, 2001, Contemp. Math., vol. 325, (2003), Amer. Math. Soc. Providence, RI), 141-160 · Zbl 1098.17013
[20] Okado, M., Existence of crystal bases for Kirillov-Reshetikhin modules of type D, Publ. Res. Inst. Math. Sci., 43, 4, 977-1004, (2007) · Zbl 1149.17009
[21] Okado, M.; Schilling, A., Existence of Kirillov-Reshetikhin crystals for nonexceptional types, Represent. Theory, 12, 186-207, (2008) · Zbl 1243.17009
[22] Okado, M.; Schilling, A.; Shimozono, M., A tensor product theorem related to perfect crystals, J. Algebra, 267, 212-245, (2003) · Zbl 1039.17017
[23] Schilling, A., Combinatorial structure of Kirillov-Reshetikhin crystals of type \(D_n^{(1)}, B_n^{(1)}, A_{2 n - 1}^{(2)}\), J. Algebra, 319, 7, 2938-2962, (2008) · Zbl 1201.17010
[24] Schilling, A.; Warnaar, S. O., Inhomogeneous lattice paths, generalized kostka polynomials and \(A_{n - 1}\) supernomials, Comm. Math. Phys., 202, 2, 359-401, (1999) · Zbl 0935.05090
[25] Schützenberger, M. P., Promotion des morphismes dʼensembles ordonnés, Discrete Math., 2, 73-94, (1972) · Zbl 0279.06001
[26] Shimozono, M., Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin., 15, 2, 151-187, (2002) · Zbl 1106.17305
[27] Stembridge, J. R., A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., 355, 12, 4807-4823, (2003), (electronic) · Zbl 1047.17007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.