Pelczar-Barwacz, Anna Strictly singular operators in asymptotic \(\ell_p\) Banach spaces. (English) Zbl 1300.46009 Ill. J. Math. 56, No. 3, 861-883 (2012). Author’s abstract: We present a condition on higher-order asymptotic behavior of basic sequences in a Banach space ensuring the existence of bounded noncompact strictly singular operators on a subspace. Applications concern asymptotic \(\ell_p\) spaces, \(1 \leq p < \infty\), in particular, convexified mixed Tsirelson spaces and related asymptotic HI spaces. Reviewer: Daniel Li (Lens) MSC: 46B06 Asymptotic theory of Banach spaces 52A23 Asymptotic theory of convex bodies 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces Keywords:asymptotic \(\ell_p\) space; convexified mixed Tsirelson space; HI space; Schreier families; strictly singular operator × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] \beginbarticle \bauthor\binitsD. \bsnmAlspach and \bauthor\binitsS. A. \bsnmArgyros, \batitleComplexity of weakly null sequences, \bjtitleDiss. Math. \bvolume321 (\byear1992), page 1-\blpage44. \endbarticle \endbibitem [2] \beginbarticle \bauthor\binitsG. \bsnmAndroulakis and \bauthor\binitsK. \bsnmBeanland, \batitleA hereditarily indecomposable asymptotic \(\ell_2\) Banach space, \bjtitleGlasg. Math. J. \bvolume48 (\byear2006), page 503-\blpage532. \endbarticle \endbibitem · Zbl 1121.46007 · doi:10.1017/S0017089506003193 [3] \beginbarticle \bauthor\binitsG. \bsnmAndroulakis, \bauthor\binitsE. \bsnmOdell, \bauthor\binitsT. \bsnmSchlumprecht and \bauthor\binitsN. \bsnmTomczak-Jaegermann, \batitleOn the structure of the spreading models of a Banach space, \bjtitleCanad. J. Math. \bvolume57 (\byear2005), no. \bissue4, page 673-\blpage707. \endbarticle \endbibitem · Zbl 1090.46004 · doi:10.4153/CJM-2005-027-9 [4] \beginbarticle \bauthor\binitsG. \bsnmAndroulakis and \bauthor\binitsF. \bsnmSanacory, \batitleAn extension of Schreier unconditionality, \bjtitlePositivity \bvolume12 (\byear2008), no. \bissue2, page 313-\blpage340. \endbarticle \endbibitem · Zbl 1156.46017 · doi:10.1007/s11117-007-2126-2 [5] \beginbarticle \bauthor\binitsG. \bsnmAndroulakis and \bauthor\binitsT. \bsnmSchlumprecht, \batitleStrictly singular, non-compact operators exist on the space of Gowers and Maurey, \bjtitleJ. London Math. Soc. (2) \bvolume64 (\byear2001), page 655-\blpage674. \endbarticle \endbibitem · Zbl 1015.46007 · doi:10.1112/S0024610701002769 [6] \beginbarticle \bauthor\binitsS. A. \bsnmArgyros and \bauthor\binitsI. \bsnmDeliyanni, \batitleExamples of asymptotic \(\ell_1\) Banach spaces, \bjtitleTrans. Amer. Math. Soc. \bvolume349 (\byear1997), page 973-\blpage995. \endbarticle \endbibitem · Zbl 0869.46002 · doi:10.1090/S0002-9947-97-01774-1 [7] \beginbarticle \bauthor\binitsS. A. \bsnmArgyros, \bauthor\binitsI. \bsnmDeliyanni and \bauthor\binitsA. \bsnmManoussakis, \batitleDistortion and spreading models in modified mixed Tsirelson spaces, \bjtitleStudia Math. \bvolume157 (\byear2003), no. \bissue3, page 199-\blpage236. \endbarticle \endbibitem · Zbl 1028.46019 · doi:10.4064/sm157-3-1 [8] \beginbarticle \bauthor\binitsS. A. \bsnmArgyros, \bauthor\binitsI. \bsnmDeliyanni, \bauthor\binitsD. \bsnmKutzarova and \bauthor\binitsA. \bsnmManoussakis, \batitleModified mixed Tsirelson spaces, \bjtitleJ. Funct. Anal. \bvolume159 (\byear1998), page 43-\blpage109. \endbarticle \endbibitem · Zbl 0931.46017 · doi:10.1006/jfan.1998.3310 [9] \beginbarticle \bauthor\binitsS. A. \bsnmArgyros and \bauthor\binitsR. \bsnmHaydon, \batitleA hereditarily indecomposable \(\mc{L}_\infty\)-space that solves the scalar-plus-compact problem, \bjtitleActa Math. \bvolume206 (\byear2011), no. \bissue1, page 1-\blpage54. \endbarticle \endbibitem · Zbl 1223.46007 · doi:10.1007/s11511-011-0058-y [10] \beginbarticle \bauthor\binitsS. A. \bsnmArgyros, \bauthor\binitsS. \bsnmMercourakis and \bauthor\binitsA. \bsnmTsarpalias, \batitleConvex unconditionality and summability of weakly null sequences, \bjtitleIsrael J. Math. \bvolume107 (\byear1998), page 157-\blpage193. \endbarticle \endbibitem · Zbl 0942.46007 · doi:10.1007/BF02764008 [11] \beginbarticle \bauthor\binitsK. \bsnmBeanland, \batitleOperators on asymptotic \(\ell_p\) spaces which are not compact perturbations of a multiple of the identity, \bjtitleIllinois J. Math. \bvolume52 (\byear2008), no. \bissue2, page 515-\blpage532. \endbarticle \endbibitem [12] \beginbarticle \bauthor\binitsA. \bsnmBrunel and \bauthor\binitsL. \bsnmSucheston, \batitleOn B-convex Banach spaces, \bjtitleMath. Systems Theory \bvolume7 (\byear1974), no. \bissue4, page 294-\blpage299. \endbarticle \endbibitem · Zbl 0323.46018 · doi:10.1007/BF01795947 [13] \beginbarticle \bauthor\binitsI. \bsnmDeliyanni and \bauthor\binitsA. \bsnmManoussakis, \batitleAsymptotic \(\ell_p\) hereditarily indecomposable Banach spaces, \bjtitleIllinois J. Math. \bvolume51 (\byear2007), page 767-\blpage803. \endbarticle \endbibitem [14] \beginbarticle \bauthor\binitsS. \bsnmDilworth, \bauthor\binitsE. \bsnmOdell, \bauthor\binitsT. \bsnmSchlumprecht and \bauthor\binitsA. , \batitlePartial unconditionality, \bjtitleHouston J. Math. \bvolume35 (\byear2009), no. \bissue4, page 1251-\blpage1311. \endbarticle \endbibitem [15] \beginbarticle \bauthor\binitsI. \bsnmGasparis, \batitleA dichotomy theorem for subsets of the power set of the natural numbers, \bjtitleProc. Amer. Math. Soc. \bvolume129 (\byear2001), no. \bissue3, page 759-\blpage764. \endbarticle \endbibitem · Zbl 0962.46006 · doi:10.1090/S0002-9939-00-05594-5 [16] \beginbarticle \bauthor\binitsI. \bsnmGasparis, \batitleStrictly singular non-compact operators on hereditarily indecomposable Banach spaces, \bjtitleProc. Amer. Math. Soc. \bvolume131 (\byear2002), page 1181-\blpage1189. \endbarticle \endbibitem · Zbl 1019.46006 · doi:10.1090/S0002-9939-02-06657-1 [17] \beginbarticle \bauthor\binitsW. T. \bsnmGowers and \bauthor\binitsB. \bsnmMaurey, \batitleThe unconditional basic sequence problem, \bjtitleJ. Amer. Math. Soc. \bvolume6 (\byear1993), page 851-\blpage874. \endbarticle \endbibitem · Zbl 0827.46008 · doi:10.2307/2152743 [18] \beginbchapter \bauthor\binitsW. T. \bsnmGowers, \bctitleA remark about the scalar-plus-compact problem, \bbtitleConvex geometric analysis (\bconflocationBerkeley, CA, \bconfdate1996), \bsertitleMath. Sci. Res. Inst. Publ., vol. \bseriesno34, \bpublisherCambridge Univ. Press, \blocationCambridge, \byear1999, pp. page 111-\blpage115. \endbchapter \endbibitem [19] \beginbarticle \bauthor\binitsD. \bsnmKutzarova, \bauthor\binitsA. \bsnmManoussakis and \bauthor\binitsA. \bsnmPelczar-Barwacz, \batitleIsomorphisms and strictly singular operators in mixed Tsirelson spaces, \bjtitleJ. Math. Anal. Appl. \bvolume388 (\byear2012), page 1040-\blpage1060. \endbarticle \endbibitem · Zbl 1242.46014 · doi:10.1016/j.jmaa.2011.10.053 [20] \beginbarticle \bauthor\binitsH. \bsnmLemberg, \batitleSur un théorème de J.-L. Krivine sur la finie représentation de \(\ell_p\) dans un espace de Banach, \bjtitleC. R. Acad. Sci. Paris Sér. I Math. \bvolume292 (\byear1981), no. \bissue14, page 669-\blpage670. \endbarticle \endbibitem [21] \beginbarticle \bauthor\binitsA. \bsnmManoussakis, \batitleA note on certain equivalent norms on Tsirelson’s space, \bjtitleGlasg. Math. J. \bvolume46 (\byear2004), page 379-\blpage390. \endbarticle \endbibitem · Zbl 1060.46006 · doi:10.1017/S0017089504001867 [22] \beginbchapter \bauthor\binitsE. \bsnmOdell, \bctitleOn Schreier unconditional sequences, \bbtitleBanach spaces (Mérida, 1992), \bsertitleContemp. Math., vol. \bseriesno144, \bpublisherAmer. Math. Soc., \blocationProvidence, RI, \byear1993, pp. page 197-\blpage201. \endbchapter \endbibitem · doi:10.1090/conm/144/1209461 [23] \beginbarticle \bauthor\binitsE. \bsnmOdell, \bauthor\binitsN. \bsnmTomczak-Jaegermann and \bauthor\binitsR. \bsnmWagner, \batitleProximity to \(\ell_1\) and distortion in asymptotic \(\ell_1\) spaces, \bjtitleJ. Funct. Anal. \bvolume150 (\byear1997), page 101-\blpage145. \endbarticle \endbibitem · Zbl 0890.46015 · doi:10.1006/jfan.1997.3106 [24] \beginbchapter \bauthor\binitsT. \bsnmSchlumprecht, \bctitleHow many operators exist on a Banach space?, \bbtitleTrends in Banach spaces and operator theory (Memphis, TN, 2001), \bsertitleContemp. Math., vol. \bseriesno321, \bpublisherAmer. Math. Soc., \blocationProvidence, RI, \byear2003, pp. page 295-\blpage333. \endbchapter \endbibitem · doi:10.1090/conm/321/05651 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.