×

The existence of fixed point theorems via \(w\)-distance and \(\alpha\)-admissible mappings and applications. (English) Zbl 1300.54075

Summary: We introduce the concept of generalized \(w_\alpha\)-contraction mappings and establish the existence of fixed point theorems for such mappings by using the properties of \(w\)-distance and \(\alpha\)-admissible mappings. We also apply our result to coincidence point and common fixed point theorems in metric spaces. Further, the fixed point theorems endowed with an arbitrary binary relation are also derived from our results. Our results generalize the result of M. A. Kutbi, [J. Inequal. Appl. 2013, Article ID 141, 7 p., electronic only (2013; Zbl 1328.54044)], and several results in the literature.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems

Citations:

Zbl 1328.54044
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Banach, S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundamenta Mathematicae, 3, 133-181 (1922) · JFM 48.0201.01
[2] Nadler, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002
[3] Kaneko, H., Single-valued and multivalued \(f\)-contractions, Bollettino dell’Unione Matematica Italiana, 6, 4, 29-33 (1985) · Zbl 0568.54031
[4] Hussain, N.; Alotaibi, A., Coupled coincidences for multi-valued nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Applications, 2011, 81 (2011) · Zbl 1315.47049
[5] Daffer, P. Z.; Kaneko, H., Multi-valued \(f\)-contractive mappings, Bollettino dell’Unione Matematica Italiana A, 8, 7, 233-241 (1994) · Zbl 0813.54013
[6] Kaneko, H.; Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, International Journal of Mathematics and Mathematical Sciences, 12, 2, 257-262 (1989) · Zbl 0671.54023
[7] Latif, A.; Tweddle, I., Some results on coincidence points, Bulletin of the Australian Mathematical Society, 59, 1, 111-117 (1999) · Zbl 0930.47021
[8] Pathak, H. K., Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Mathematica Hungarica, 67, 1-2, 69-78 (1995) · Zbl 0821.54027
[9] Pathak, H. K.; Khan, M. S., Fixed and coincidence points of hybrid mappings, Archivum Mathematicum, 38, 3, 201-208 (2002) · Zbl 1068.47073
[10] Sintunavarat, W.; Kumam, P., Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition, Applied Mathematics Letters, 22, 12, 1877-1881 (2009) · Zbl 1225.54028
[11] Sintunavarat, W.; Kumam, P., Weak condition for generalized multi-valued \((f, \alpha, \beta )\)-weak contraction mappings, Applied Mathematics Letters, 24, 4, 460-465 (2011) · Zbl 1206.54064
[12] Sintunavarat, W.; Kumam, P., Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Applied Mathematics Letters, 25, 1, 52-57 (2012) · Zbl 1231.54029
[13] Sintunavarat, W.; Kumam, P., Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Applied Mathematics Letters, 25, 11, 1849-1855 (2012) · Zbl 1254.54065
[14] Kada, O.; Suzuki, T.; Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonica, 44, 2, 381-391 (1996) · Zbl 0897.54029
[15] Suzuki, T.; Takahashi, W., Fixed point theorems and characterizations of metric completeness, Topological Methods in Nonlinear Analysis, 8, 2, 371-382 (1996) · Zbl 0902.47050
[16] Bin Dehaish, B. A.; Latif, A., Fixed point results for multivalued contractive maps, Fixed Point Theory and Applications, 2012, article 61 (2012) · Zbl 1469.54067
[17] Latif, A.; Abdou, A. A. N., Fixed points of generalized contractive maps, Fixed Point Theory and Applications, 2009 (2009) · Zbl 1168.54020
[18] Latif, A.; Abdou, A. A. N., Multivalued generalized nonlinear contractive maps and fixed points, Nonlinear Analysis. Theory, Methods & Applications, 74, 4, 1436-1444 (2011) · Zbl 1206.54050
[19] Suzuki, T., Generalized distance and existence theorems in complete metric spaces, Journal of Mathematical Analysis and Applications, 253, 2, 440-458 (2001) · Zbl 0983.54034
[20] Kutbi, M. A., \(f\)-contractive multivalued maps and coincidence points, Journal of Inequalities and Applications, 2013, article 141 (2013) · Zbl 1328.54044
[21] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83, 4, 261-263 (1976) · Zbl 0321.54025
[22] Mohammadi, B.; Rezapour, S.; Shahzad, N., Some results on fixed points of \(\alpha - \psi \)-ciric generalized multifunctions, Fixed Point Theory and Applications, 2013, article 24 (2013) · Zbl 1423.54090
[23] Samet, B.; Vetro, C.; Vetro, P., Fixed point theorems for \(\alpha - \psi \)-contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications, 75, 4, 2154-2165 (2012) · Zbl 1242.54027
[24] Asl, J. H.; Rezapour, S.; Shahzad, N., On fixed points of \(α-ψ\)-contractive multifunctions, Fixed Point Theory and Applications, 2012, article 212 (2012) · Zbl 1293.54017
[25] Agarwal, R. P.; Sintunavarat, W.; Kumam, P., PPF dependent fixed point theorems for an \(\alpha_c\)-admissible non-self mapping in the Razumikhin class · Zbl 1342.47069
[26] Hussain, N.; Salimi, P.; Latif, A., Fixed point results for single and set-valued \(\alpha - \eta - \psi \)-contractive mappings, Fixed Point Theory and Applications, 2013, article 212 (2013) · Zbl 1293.54025
[27] Hussain, N.; Kutbi, M. A.; Salimi, P., Best proximity point results for modified \(\alpha - \psi \)-proximal rational contractions, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.54065
[28] Salimi, P.; Latif, A.; Hussain, N., Modified \(\alpha - \psi \)-contractive mappings with applications, Fixed Point Theory and Applications, 2013, article 151 (2013) · Zbl 1293.54036
[29] Du, W.-S., Fixed point theorems for generalized Hausdorff metrics, International Mathematical Forum, 3, 21-24, 1011-1022 (2008) · Zbl 1158.54020
[30] Haghi, R. H.; Rezapour, Sh.; Shahzad, N., Some fixed point generalizations are not real generalizations, Nonlinear Analysis: Theory, Methods & Applications, 74, 5, 1799-1803 (2011) · Zbl 1251.54045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.