Causal inference in statistics: an overview. (English) Zbl 1300.62013

Summary: This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl [Causality. Models, reasoning, and inference. Cambridge: Cambridge University Press (2000; Zbl 0959.68116)], which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret,” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.


62A01 Foundations and philosophical topics in statistics
62A99 Foundational topics in statistics
62A09 Graphical methods in statistics


Zbl 0959.68116


Full Text: DOI


[1] Angrist, J. and Imbens, G. (1991). Source of identifying information in evaluation models. Tech. Rep. Discussion Paper 1568, Department of Economics, Harvard University, Cambridge, MA.
[2] Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables (with comments)., Journal of the American Statistical Association 91 444-472. · Zbl 0897.62130 · doi:10.2307/2291629
[3] Arah, O. (2008). The role of causal reasoning in understanding Simpson’s paradox, Lord’s paradox, and the suppression effect: Covariate selection in the analysis of observational studies., Emerging Themes in Epidemiology 4 doi:10.1186/1742-7622-5-5. Online at http://www.ete-online.com/content/5/1/5.
[4] Arjas, E. and Parner, J. (2004). Causal reasoning from longitudinal data., Scandinavian Journal of Statistics 31 171-187. · Zbl 1060.62032 · doi:10.1111/j.1467-9469.2004.02-134.x
[5] Avin, C., Shpitser, I. and Pearl, J. (2005). Identifiability of path-specific effects. In, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05 . Morgan-Kaufmann Publishers, Edinburgh, UK.
[6] Balke, A. and Pearl, J. (1995). Counterfactuals and policy analysis in structural models. In, Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.). Morgan Kaufmann, San Francisco, 11-18.
[7] Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance., Journal of the American Statistical Association 92 1172-1176. · Zbl 0888.62049 · doi:10.2307/2965583
[8] Berkson, J. (1946). Limitations of the application of fourfold table analysis to hospital data., Biometrics Bulletin 2 47-53.
[9] Bishop, Y., Fienberg, S. and Holland, P. (1975)., Discrete multivariate analysis: theory and practice . MIT Press, Cambridge, MA. · Zbl 0332.62039
[10] Blyth, C. (1972). On Simpson’s paradox and the sure-thing principle., Journal of the American Statistical Association 67 364-366. · Zbl 0245.62008 · doi:10.2307/2284382
[11] Bollen, K. (1989)., Structural Equations with Latent Variables . John Wiley, New York. · Zbl 0731.62159
[12] Bonet, B. (2001). Instrumentality tests revisited. In, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence . Morgan Kaufmann, San Francisco, CA, 48-55.
[13] Bowden, R. and Turkington, D. (1984)., Instrumental Variables . Cambridge University Press, Cambridge, England. · Zbl 0606.62130
[14] Brent, R. and Lok, L. (2005). A fishing buddy for hypothesis generators., Science 308 523-529. · Zbl 0683.00014
[15] Cai, Z. and Kuroki, M. (2006). Variance estimators for three ‘probabilities of causation’., Risk Analysis 25 1611-1620. · Zbl 1014.91056
[16] Chalak, K. and White, H. (2006). An extended class of instrumental variables for the estimation of causal effects. Tech. Rep. Discussion Paper, UCSD, Department of, Economics.
[17] Chen, A., Bengtsson, T. and Ho, T. (2009). A regression paradox for linear models: Sufficient conditions and relation to Simpson’s paradox., The American Statistician 63 218-225.
[18] Chickering, D. and Pearl, J. (1997). A clinician’s tool for analyzing non-compliance., Computing Science and Statistics 29 424-431. · Zbl 0906.62052
[19] Cole, P. (1997). Causality in epidemiology, health policy, and law., Journal of Marketing Research 27 10279-10285.
[20] Cole, S. and Hernán, M. (2002). Fallibility in estimating direct effects., International Journal of Epidemiology 31 163-165.
[21] Cox, D. (1958)., The Planning of Experiments . John Wiley and Sons, NY. · Zbl 0084.15802
[22] Cox, D. and Wermuth, N. (2003). A general condition for avoiding effect reversal after marginalization., Journal of the Royal Statistical Society, Series B (Statistical Methodology) 65 937-941. JSTOR: · Zbl 1067.62017 · doi:10.1111/1467-9868.00424
[23] Cox, D. and Wermuth, N. (2004). Causality: A statistical view., International Statistical Review 72 285-305.
[24] Dawid, A. (1979). Conditional independence in statistical theory., Journal of the Royal Statistical Society, Series B 41 1-31. JSTOR: · Zbl 0408.62004
[25] Dawid, A. (2000). Causal inference without counterfactuals (with comments and rejoinder)., Journal of the American Statistical Association 95 407-448. JSTOR: · Zbl 0999.62003 · doi:10.2307/2669377
[26] Dawid, A. (2002). Influence diagrams for causal modelling and inference., International Statistical Review 70 161-189. · Zbl 1215.62002 · doi:10.1111/j.1751-5823.2002.tb00354.x
[27] DeFinetti, B. (1974)., Theory of Probability: A Critical Introductory Treatment . Wiley, London. 2 volumes. Translated by A. Machi and A. Smith.
[28] Duncan, O. (1975)., Introduction to Structural Equation Models . Academic Press, New York. · Zbl 0337.90019
[29] Eells, E. (1991)., Probabilistic Causality . Cambridge University Press, Cambridge, MA. · Zbl 0785.60003 · doi:10.1017/CBO9780511570667
[30] Frangakis, C. and Rubin, D. (2002). Principal stratification in causal inference., Biometrics 1 21-29. JSTOR: · Zbl 1209.62288 · doi:10.1111/j.0006-341X.2002.00021.x
[31] Glymour, M. and Greenland, S. (2008). Causal diagrams. In, Modern Epidemiology (K. Rothman, S. Greenland and T. Lash, eds.), 3rd ed. Lippincott Williams & Wilkins, Philadelphia, PA, 183-209.
[32] Goldberger, A. (1972). Structural equation models in the social sciences., Econometrica: Journal of the Econometric Society 40 979-1001. JSTOR: · doi:10.2307/1913851
[33] Goldberger, A. (1973). Structural equation models: An overview. In, Structural Equation Models in the Social Sciences (A. Goldberger and O. Duncan, eds.). Seminar Press, New York, NY, 1-18.
[34] Good, I. and Mittal, Y. (1987). The amalgamation and geometry of two-by-two contingency tables., The Annals of Statistics 15 694-711. · Zbl 0665.62058 · doi:10.1214/aos/1176350369
[35] Greenland, S. (1999). Relation of probability of causation, relative risk, and doubling dose: A methodologic error that has become a social problem., American Journal of Public Health 89 1166-1169.
[36] Greenland, S., Pearl, J. and Robins, J. (1999). Causal diagrams for epidemiologic research., Epidemiology 10 37-48. · Zbl 1059.62506
[37] Greenland, S. and Robins, J. (1986). Identifiability, exchangeability, and epidemiological confounding., International Journal of Epidemiology 15 413-419.
[38] Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations., Econometrica 11 1-12. Reprinted in D.F. Hendry and M.S. Morgan (Eds.), The Foundations of Econometric Analysis , Cambridge University Press, 477-490, 1995. JSTOR: · Zbl 0063.01836 · doi:10.2307/1905714
[39] Hafeman, D. and Schwartz, S. (2009). Opening the black box: A motivation for the assessment of mediation., International Journal of Epidemiology 3 838-845.
[40] Heckman, J. (1992). Randomization and social policy evaluation. In, Evaluations: Welfare and Training Programs (C. Manski and I. Garfinkle, eds.). Harvard University Press, Cambridge, MA, 201-230.
[41] Heckman, J. (2008). Econometric causality., International Statistical Review 76 1-27. · Zbl 1379.62094
[42] Heckman, J. and Navarro-Lozano, S. (2004). Using matching, instrumental variables, and control functions to estimate economic choice models., The Review of Economics and Statistics 86 30-57.
[43] Heckman, J. and Vytlacil, E. (2005). Structural equations, treatment effects and econometric policy evaluation., Econometrica 73 669-738. JSTOR: · Zbl 1152.62406 · doi:10.1111/j.1468-0262.2005.00594.x
[44] Holland, P. (1988). Causal inference, path analysis, and recursive structural equations models. In, Sociological Methodology (C. Clogg, ed.). American Sociological Association, Washington, D.C., 449-484.
[45] Hurwicz, L. (1950). Generalization of the concept of identification. In, Statistical Inference in Dynamic Economic Models (T. Koopmans, ed.). Cowles Commission, Monograph 10, Wiley, New York, 245-257.
[46] Imai, K., Keele, L. and Yamamoto, T. (2008). Identification, inference, and sensitivity analysis for causal mediation effects. Tech. rep., Department of Politics, Princton, University. · Zbl 1328.62478
[47] Imbens, G. and Wooldridge, J. (2009). Recent developments in the econometrics of program evaluation., Journal of Economic Literature 47 .
[48] Kiiveri, H., Speed, T. and Carlin, J. (1984). Recursive causal models., Journal of Australian Math Society 36 30-52. · Zbl 0551.62021 · doi:10.1017/S1446788700027312
[49] Koopmans, T. (1953). Identification problems in econometric model construction. In, Studies in Econometric Method (W. Hood and T. Koopmans, eds.). Wiley, New York, 27-48. · Zbl 0053.27905
[50] Kuroki, M. and Miyakawa, M. (1999). Identifiability criteria for causal effects of joint interventions., Journal of the Royal Statistical Society 29 105-117. · Zbl 0952.62116
[51] Lauritzen, S. (1996)., Graphical Models . Clarendon Press, Oxford. · Zbl 0907.62001
[52] Lauritzen, S. (2001). Causal inference from graphical models. In, Complex Stochastic Systems (D. Cox and C. Kluppelberg, eds.). Chapman and Hall/CRC Press, Boca Raton, FL, 63-107. · Zbl 1010.62004
[53] Lindley, D. (2002). Seeing and doing: The concept of causation., International Statistical Review 70 191-214. · Zbl 1330.00013
[54] Lindley, D. and Novick, M. (1981). The role of exchangeability in inference., The Annals of Statistics 9 45-58. · Zbl 0473.62005 · doi:10.1214/aos/1176345331
[55] MacKinnon, D., Fairchild, A. and Fritz, M. (2007). Mediation analysis., Annual Review of Psychology 58 593-614.
[56] Manski, C. (1990). Nonparametric bounds on treatment effects., American Economic Review, Papers and Proceedings 80 319-323.
[57] Marschak, J. (1950). Statistical inference in economics. In, Statistical Inference in Dynamic Economic Models (T. Koopmans, ed.). Wiley, New York, 1-50. Cowles Commission for Research in Economics, Monograph 10.
[58] Meek, C. and Glymour, C. (1994). Conditioning and intervening., British Journal of Philosophy Science 45 1001-1021. · Zbl 0813.62003 · doi:10.1093/bjps/45.4.1001
[59] Miettinen, O. (1974). Proportion of disease caused or prevented by a given exposure, trait, or intervention., Journal of Epidemiology 99 325-332.
[60] Morgan, S. and Winship, C. (2007)., Counterfactuals and Causal Inference: Methods and Principles for Social Research (Analytical Methods for Social Research) . Cambridge University Press, New York, NY.
[61] Mortensen, L., Diderichsen, F., Smith, G. and Andersen, A. (2009). The social gradient in birthweight at term: quantification of the mediating role of maternal smoking and body mass index., Human Reproduction To appear, doi:10.1093/humrep/dep211.
[62] Neyman, J. (1923). On the application of probability theory to agricultural experiments. Essay on principles. Section 9., Statistical Science 5 465-480. · Zbl 0955.01560
[63] Pavlides, M. and Perlman, M. (2009). How likely is Simpson’s paradox?, The American Statistician 63 226-233.
[64] Pearl, J. (1988)., Probabilistic Reasoning in Intelligent Systems . Morgan Kaufmann, San Mateo, CA. · Zbl 0746.68089
[65] Pearl, J. (1993a). Comment: Graphical models, causality, and intervention., Statistical Science 8 266-269.
[66] Pearl, J. (1993b). Mediating instrumental variables. Tech. Rep. TR-210, http://ftp.cs.ucla.edu/pub/stat_ser/R210.pdf, Department of Computer Science, University of California, Los, Angeles.
[67] Pearl, J. (1995a). Causal diagrams for empirical research., Biometrika 82 669-710. JSTOR: · Zbl 0860.62045 · doi:10.1093/biomet/82.4.669
[68] Pearl, J. (1995b). On the testability of causal models with latent and instrumental variables. In, Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.). Morgan Kaufmann, San Francisco, CA, 435-443.
[69] Pearl, J. (1998). Graphs, causality, and structural equation models., Sociological Methods and Research 27 226-284.
[70] Pearl, J. (2000a)., Causality: Models, Reasoning, and Inference . Cambridge University Press, New York. 2nd edition, 2009. · Zbl 0959.68116
[71] Pearl, J. (2000b). Comment on A.P. Dawid’s, Causal inference without counterfactuals., Journal of the American Statistical Association 95 428-431.
[72] Pearl, J. (2001). Direct and indirect effects. In, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence . Morgan Kaufmann, San Francisco, CA, 411-420.
[73] Pearl, J. (2003). Statistics and causal inference: A review., Test Journal 12 281-345. · Zbl 1044.62003 · doi:10.1007/BF02595718
[74] Pearl, J. (2005). Direct and indirect effects. In, Proceedings of the American Statistical Association, Joint Statistical Meetings . MIRA Digital Publishing, Minn., MN, 1572-1581.
[75] Pearl, J. (2009a)., Causality: Models, Reasoning, and Inference . 2nd ed. Cambridge University Press, New York. · Zbl 1188.68291
[76] Pearl, J. (2009b). Letter to the editor: Remarks on the method of propensity scores., Statistics in Medicine 28 1415-1416. http://ftp.cs.ucla.edu/pub/stat s er/r345-sim.pdf.
[77] Pearl, J. (2009c). Myth, confusion, and science in causal analysis. Tech. Rep. R-348, University of California, Los Angeles, CA., http://ftp.cs.ucla.edu/pub/stat s er/r348.pdf.
[78] Pearl, J. and Paz, A. (2009). Confounding equivalence in observational studies. Tech. Rep. TR-343, University of California, Los Angeles, CA., http://ftp.cs.ucla.edu/pub/stat_ser/r343.pdf.
[79] Pearl, J. and Robins, J. (1995). Probabilistic evaluation of sequential plans from causal models with hidden variables. In, Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.). Morgan Kaufmann, San Francisco, 444-453.
[80] Pearl, J. and Verma, T. (1991). A theory of inferred causation. In, Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference (J. Allen, R. Fikes and E. Sandewall, eds.). Morgan Kaufmann, San Mateo, CA, 441-452. · Zbl 0765.68177
[81] Pearson, K., Lee, A. and Bramley-Moore, L. (1899). Genetic (reproductive) selection: Inheritance of fertility in man., Philosophical Transactions of the Royal Society A 73 534-539.
[82] Petersen, M., Sinisi, S. and van der Laan, M. (2006). Estimation of direct causal effects., Epidemiology 17 276-284.
[83] Robertson, D. (1997). The common sense of cause in fact., Texas Law Review 75 1765-1800.
[84] Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period - applications to control of the healthy workers survivor effect., Mathematical Modeling 7 1393-1512. · Zbl 0614.62136 · doi:10.1016/0270-0255(86)90088-6
[85] Robins, J. (1987). A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods., Journal of Chronic Diseases 40 139S-161S.
[86] Robins, J. (1989). The analysis of randomized and non-randomized aids treatment trials using a new approach to causal inference in longitudinal studies. In, Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.). NCHSR, U.S. Public Health Service, Washington, D.C., 113-159.
[87] Robins, J. (1999). Testing and estimation of directed effects by reparameterizing directed acyclic with structural nested models. In, Computation, Causation, and Discovery (C. Glymour and G. Cooper, eds.). AAAI/MIT Press, Cambridge, MA, 349-405.
[88] Robins, J. (2001). Data, design, and background knowledge in etiologic inference., Epidemiology 12 313-320. · Zbl 0647.62093 · doi:10.1016/0898-1221(87)90236-7
[89] Robins, J. and Greenland, S. (1989a). The probability of causation under a stochastic model for individual risk., Biometrics 45 1125-1138. JSTOR: · Zbl 0715.62205 · doi:10.2307/2531765
[90] Robins, J. and Greenland, S. (1989b). Estimability and estimation of excess and etiologic fractions., Statistics in Medicine 8 845-859.
[91] Robins, J. and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects., Epidemiology 3 143-155. · Zbl 0647.62093 · doi:10.1016/0898-1221(87)90236-7
[92] Rosenbaum, P. (2002)., Observational Studies . 2nd ed. Springer-Verlag, New York. · Zbl 0985.62091
[93] Rosenbaum, P. and Rubin, D. (1983). The central role of propensity score in observational studies for causal effects., Biometrika 70 41-55. JSTOR: · Zbl 0522.62091 · doi:10.1093/biomet/70.1.41
[94] Rothman, K. (1976). Causes., American Journal of Epidemiology 104 587-592.
[95] Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies., Journal of Educational Psychology 66 688-701.
[96] Rubin, D. (2004). Direct and indirect causal effects via potential outcomes., Scandinavian Journal of Statistics 31 161-170. · Zbl 1065.62189 · doi:10.1111/j.1467-9469.2004.02-123.x
[97] Rubin, D. (2005). Causal inference using potential outcomes: Design, modeling, decisions., Journal of the American Statistical Association 100 322-331. · Zbl 1117.62418 · doi:10.1198/016214504000001880
[98] Rubin, D. (2007). The design, versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials. Statistics in Medicine 26 20-36. · doi:10.1002/sim.2739
[99] Rubin, D. (2009). Author’s reply: Should observational studies be designed to allow lack of balance in covariate distributions across treatment group?, Statistics in Medicine 28 1420-1423.
[100] Shpitser, I. and Pearl, J. (2006). Identification of conditional interventional distributions. In, Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (R. Dechter and T. Richardson, eds.). AUAI Press, Corvallis, OR, 437-444.
[101] Shpitser, I. and Pearl, J. (2007). What counterfactuals can be tested. In, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence . AUAI Press, Vancouver, BC, Canada, 352-359. Also, Journal of Machine Learning Research , 9:1941-1979, 2008.
[102] Shpitser, I. and Pearl, J. (2008). Dormant independence. In, Proceedings of the Twenty-Third Conference on Artificial Intelligence . AAAI Press, Menlo Park, CA, 1081-1087.
[103] Shpitser, I. and Pearl, J. (2009). Effects of treatment on the treated: Identification and generalization. In, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence . AUAI Press, Montreal, Quebec.
[104] Shrier, I. (2009). Letter to the editor: Propensity scores., Statistics in Medicine 28 1317-1318. See also Pearl 2009 http://ftp.cs.ucla.edu/pub/stat_ser/r348.pdf.
[105] Shrout, P. and Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations., Psychological Methods 7 422-445.
[106] Simon, H. (1953). Causal ordering and identifiability. In, Studies in Econometric Method (W. C. Hood and T. Koopmans, eds.). Wiley and Sons, Inc., New York, NY, 49-74. · Zbl 0053.28002
[107] Simon, H. and Rescher, N. (1966). Cause and counterfactual., Philosophy and Science 33 323-340.
[108] Simpson, E. (1951). The interpretation of interaction in contingency tables., Journal of the Royal Statistical Society, Series B 13 238-241. JSTOR: · Zbl 0045.08802
[109] Sobel, M. (1998). Causal inference in statistical models of the process of socioeconomic achievement., Sociological Methods & Research 27 318-348.
[110] Sobel, M. (2008). Identification of causal parameters in randomized studies with mediating variables., Journal of Educational and Behavioral Statistics 33 230-231.
[111] Spirtes, P., Glymour, C. and Scheines, R. (1993)., Causation, Prediction, and Search . Springer-Verlag, New York. · Zbl 0806.62001
[112] Spirtes, P., Glymour, C. and Scheines, R. (2000)., Causation, Prediction, and Search . 2nd ed. MIT Press, Cambridge, MA. · Zbl 0806.62001
[113] Stock, J. and Watson, M. (2003)., Introduction to Econometrics . Addison Wesley, New York.
[114] Strotz, R. and Wold, H. (1960). Recursive versus nonrecursive systems: An attempt at synthesis., Econometrica 28 417-427. JSTOR: · doi:10.2307/1907731
[115] Suppes, P. (1970)., A Probabilistic Theory of Causality . North-Holland Publishing Co., Amsterdam. · Zbl 0232.68029
[116] Tian, J., Paz, A. and Pearl, J. (1998). Finding minimal separating sets. Tech. Rep. R-254, University of California, Los Angeles, CA.
[117] Tian, J. and Pearl, J. (2000). Probabilities of causation: Bounds and identification., Annals of Mathematics and Artificial Intelligence 28 287-313. · Zbl 1048.03502 · doi:10.1023/A:1018912507879
[118] Tian, J. and Pearl, J. (2002). A general identification condition for causal effects. In, Proceedings of the Eighteenth National Conference on Artificial Intelligence . AAAI Press/The MIT Press, Menlo Park, CA, 567-573.
[119] VanderWeele, T. (2009). Marginal structural models for the estimation of direct and indirect effects., Epidemiology 20 18-26.
[120] VanderWeele, T. and Robins, J. (2007). Four types of effect modification: A classification based on directed acyclic graphs., Epidemiology 18 561-568.
[121] Wasserman, L. (2004)., All of Statistics: A Concise Course in Statistical Inference . Springer Science+Business Media, Inc., New York, NY. · Zbl 1053.62005
[122] Wermuth, N. (1992). On block-recursive regression equations., Brazilian Journal of Probability and Statistics (with discussion) 6 1-56. · Zbl 0777.62071
[123] Wermuth, N. and Cox, D. (1993). Linear dependencies represented by chain graphs., Statistical Science 8 204-218. · Zbl 0955.62593 · doi:10.1214/ss/1177010887
[124] Whittaker, J. (1990)., Graphical Models in Applied Multivariate Statistics . John Wiley, Chichester, England. · Zbl 0732.62056
[125] Woodward, J. (2003)., Making Things Happen . Oxford University Press, New York, NY.
[126] Wooldridge, J. (2002)., Econometric Analysis of Cross Section and Panel Data . MIT Press, Cambridge and London. · Zbl 1441.62010
[127] Wooldridge, J. (2009). Should instrumental variables be used as matching variables? Tech. Rep. https://www.msu.edu/ ec/faculty/wooldridge/current
[128] Wright, S. (1921). Correlation and causation., Journal of Agricultural Research 20 557-585.
[129] Yule, G. (1903). Notes on the theory of association of attributes in statistics., Biometrika 2 121-134.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.