zbMATH — the first resource for mathematics

The log-generalized modified Weibull regression model. (English) Zbl 1300.62019
Summary: For the first time, we introduce the log-generalized modified Weibull regression model based on the modified Weibull distribution [J. M. F. Carrasco et al., Comput. Stat. Data Anal. 53, No. 2, 450–462 (2008; Zbl 1231.62015)]. This distribution can accommodate increasing, decreasing, bathtub and unimodal shaped hazard functions. A second advantage is that it includes classical distributions reported in lifetime literature as special cases. We also show that the new regression model can be applied to censored data since it represents a parametric family of models that includes as submodels several widely known regression models and therefore can be used more effectively in the analysis of survival data. We obtain maximum likelihood estimates for the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. In addition, we define martingale and deviance residuals to detect outliers and evaluate the model assumptions. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models.

62E10 Characterization and structure theory of statistical distributions
62F10 Point estimation
62N05 Reliability and life testing
Full Text: DOI Euclid
[1] Atkinson, A. C. (1985)., Plots, Transformations and Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis . Oxford Univ. Press. · Zbl 0582.62065
[2] Aarset, M. V. (1987). How to identify bathtub hazard rate., IEEE Transactions on Reliability 36 106-108. · Zbl 0625.62092 · doi:10.1109/TR.1987.5222310
[3] Cancho, V. G., Bolfarine, H. and Achcar, J. A. (1999). A Bayesian analysis for the exponentiated-Weibull distribution., Journal of Applied Statistics 8 227-242. · Zbl 0924.62029
[4] Cancho, V. G., Ortega, E. M. M. and Bolfarine, H. (2009). The exponentiated-Weibull regression models with cure rate., Journal of Applied Probability and Statistics 4 125-156.
[5] Carrasco, J. M. F., Ortega, E. M. M. and Cordeiro, M. G. (2008). A generalized modified Weibull distribution for lifetime modeling., Computational Statistics and Data Analysis 53 450-462. · Zbl 1231.62015 · doi:10.1016/j.csda.2008.08.023
[6] Carrasco, J. M. F., Ortega, E. M. M. and Paula, G. A. (2008). Log-modified Weibull regression models with censored data: Sensitivity and residual analysis., Computational Statistics and Data Analysis 52 4021-4039. · Zbl 1452.62566
[7] Cook, R. D. (1977). Detection of influential observations in linear regression., Technometrics 19 15-18. JSTOR: · Zbl 0371.62096 · doi:10.2307/1268249 · links.jstor.org
[8] Cook, R. D. (1986). Assessment of local influence (with discussion)., Journal of the Royal Statistical Society B 48 133-169. JSTOR: · Zbl 0608.62041 · links.jstor.org
[9] Cook, R. D., Peña, D. and Weisberg, S. (1988). The likelihood displacement: A unifying principle for influence., Communications in Statistics , Theory and Methods 17 623-640.
[10] Davison, A. C. and Tsai, C. L. (1992). Regression model diagnostics., International Statistical Reviews 60 337-355. · Zbl 0775.62201 · doi:10.2307/1403682
[11] Doornik, J. A. (2007)., An Object-Oriented Matrix Language Ox 5 . Timberlake Consultants Press, London.
[12] Escobar, L. A. and Meeker, W. Q. (1992). Assessing influence in regression analysis with censored data., Biometrics 48 507-528. JSTOR: · Zbl 0825.62838 · doi:10.2307/2532306 · links.jstor.org
[13] Fachini, J. B., Ortega, E. M. M. and Louzada-Neto, F. (2008). Influence diagnostics for polyhazard models in the presence of covariates., Statistical Methods and Applications 17 413-433. · Zbl 1405.62132
[14] Jung, K. M. (2008). Local influence in generalized estimating equations., Scandinavian Journal of Statistics 35 286-294. · Zbl 1164.62029 · doi:10.1111/j.1467-9469.2007.00575.x
[15] Hjorth, U. (1980). A realibility distributions with increasing, decreasing, constant and bathtub failure rates., Technometrics 22 99-107. JSTOR: · Zbl 0429.62069 · doi:10.2307/1268388 · links.jstor.org
[16] Gupta, R. D. and Kundu, D. (1999). Generalized exponential distributions., Australian and New Zealand Journal of Statistics 41 173-188. · Zbl 1007.62503 · doi:10.1111/1467-842X.00072
[17] Klein, J. P. and Moeschberger, M. L. (1997)., Survival Analysis: Techniques for Censored and Truncated Data . Springer, New York. · Zbl 0871.62091
[18] Kundu, D. and Rakab, M. Z. (2005). Generalized Rayleigh distribution: Different methods of estimation., Computational Statistics and Data Analysis 49 187-200. · Zbl 1429.62449
[19] Lawless, J. F. (2003)., Statistical Models and Methods for Lifetime Data 2nd ed. Wiley Series in Probability and Statistics . Wiley, Hoboken, NJ. · Zbl 1015.62093
[20] Lai, C. D., Xie, M. and Murthy, D. N. P. (2003). A modified Weibull distribution., Transactions on Reliability 52 33-37.
[21] Laplante-Albert, K. A. (2008). Habitat-dependent mortality risk in lacustrine fish. M.Sc. thesis, Université du Québec à Trois-Rivières, Canada.
[22] Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models., Biometrics 54 570-582. · Zbl 1058.62623 · doi:10.2307/3109764
[23] McCullagh, P. and Nelder, J. A. (1989)., Generalized Linear Models , 2nd ed. Chapman and Hall, London. · Zbl 0744.62098
[24] Mudholkar, G. S., Srivastava, D. K. and Friemer, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data., Technometrics 37 436-445. · Zbl 0900.62531 · doi:10.2307/1269735
[25] Ortega, E. M. M., Bolfarine, H. and Paula G. A. (2003). Influence diagnostics in generalized log-gamma regression models., Computational Statistics and Data Analysis 42 165-186. · Zbl 1429.62336
[26] Ortega, E. M. M., Cancho, V. G. and Bolfarine, H. (2006). Influence diagnostics in exponentiated-Weibull regression models with censored data., Statistics and Operations Research Transactions 30 172-192. · Zbl 1274.62357 · www.idescat.cat · eudml:41624
[27] Ortega, E. M. M., Paula G. A. and Bolfarine, H. (2008). Deviance residuals in generalized log-gamma regression models with censored observations., Journal of Statistical Computation and Simulation 78 747-764. · Zbl 1145.62081 · doi:10.1080/00949650701282465
[28] Ortega, E. M. M., Cancho, V. G. and Paula G. A. (2009). Generalized log-gamma regression models with cure fraction., Lifetime Data Analysis 15 79-106. · Zbl 1302.62236 · doi:10.1007/s10985-008-9096-y
[29] Pettitt, A. N. and Bin Daud, I. (1989). Case-weight measures of influence for proportional hazards regression., Applied Statistics 38 51-67.
[30] Rajarshi, S. and Rajarshi, M. B. (1988). Bathtub distributions., Communications in Statistics, Theory and Methods 17 2597-2621. · Zbl 0696.62027 · doi:10.1080/03610928808829761
[31] Silva, G. O., Ortega, E. M. M., Garibay, V. C. and Barreto, M. L. (2008). Log-Burr XII regression models with censored Data., Computational Statistics and Data Analysis 52 3820-3842. · Zbl 1452.62847
[32] Stacy, E. W. (1962). A generalization of the gamma distribution., The Annals of Mathematical Statistics 33 1187-1192. · Zbl 0121.36802 · doi:10.1214/aoms/1177704481
[33] Smith. R. M. and Bain, L. J. (1975). An exponential power life testing distributions., Communications in Statistics 4 469-481. · Zbl 0306.62023 · doi:10.1080/03610927508827263
[34] Therneau, T. M., Grambsch, P. M. and Fleming, T. R. (1990). Martingale-based residuals for survival models., Biometrika 77 147-160. JSTOR: · Zbl 0692.62082 · doi:10.1093/biomet/77.1.147 · links.jstor.org
[35] Wu, X. and Luo, Z. (1993). Second-order approach to local influence., Journal of the Royal Statistical Society. Series B 55 929-936. · Zbl 0798.62032
[36] Xie, M. and Lai, C. D. (1995). Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function., Reliability Engineering and System Safety 52 87-93.
[37] Xie, F. C. and Wei, B. C. (2007). Diagnostics analysis in censored generalized Poisson regression model., Journal of Statistical Computation and Simulation 77 695-708. · Zbl 1129.62067 · doi:10.1080/10629360600581316
[38] Zhu, H., Ibrahim, J. G., Lee, S. and Zhang, H. (2007). Perturbation selection and influence measures in local influence analysis., The Annals of Statistics 35 2565-2588. · Zbl 1129.62068 · doi:10.1214/009053607000000343 · euclid:aos/1201012972
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.