Bremner, Murray R.; Sánchez-Ortega, Juana Leibniz triple systems. (English) Zbl 1301.17005 Commun. Contemp. Math. 16, No. 1, Article ID 1350051, 19 p. (2014). The authors define Leibniz triple systems in a functorial manner using the KP algorithm which converts identities for algebras into identities for dialgebras. They verify that Leibniz triple systems are natural analogues of Lie triple systems by showing that both the iterated bracket in a Leibniz algebra and the permuted associator in a Jordan dialgebra satisfy the defining identities for Leibniz triple systems. The authors construct the universal Leibniz envelopes of Leibniz triple systems and prove that every identity satisfied by the iterated bracket in a Leibniz algebra is a consequence of the defining identities for Leibniz triple systems. Reviewer: Alexandre P. Pojidaev (Novosibirsk) Cited in 1 ReviewCited in 8 Documents MSC: 17A40 Ternary compositions 17A32 Leibniz algebras 17B35 Universal enveloping (super)algebras Keywords:Leibniz algebras; Jordan dialgebras; polynomial identities; KP algorithm; Manin products PDF BibTeX XML Cite \textit{M. R. Bremner} and \textit{J. Sánchez-Ortega}, Commun. Contemp. Math. 16, No. 1, Article ID 1350051, 19 p. (2014; Zbl 1301.17005) Full Text: DOI arXiv References: [1] Bai C., Int. Math. Res. Not. 2013 pp 485– [2] DOI: 10.1016/j.geomphys.2010.02.007 · Zbl 1207.17002 · doi:10.1016/j.geomphys.2010.02.007 [3] Bloh A., Dokl. Akad. Nauk SSSR 165 pp 471– [4] Bloh A., Dokl. Akad. Nauk SSSR 175 pp 266– [5] DOI: 10.1080/00927870903468375 · Zbl 1241.17001 · doi:10.1080/00927870903468375 [6] Bremner M. R., Serdica Math. J. 38 pp 91– [7] DOI: 10.1016/j.camwa.2011.12.008 · Zbl 1247.17004 · doi:10.1016/j.camwa.2011.12.008 [8] DOI: 10.1080/00927872.2010.488671 · Zbl 1241.17032 · doi:10.1080/00927872.2010.488671 [9] DOI: 10.1088/1751-8113/43/45/455215 · Zbl 1208.17003 · doi:10.1088/1751-8113/43/45/455215 [10] Casas J. M., Forum Math. 14 pp 189– [11] DOI: 10.1007/3-540-45328-8_4 · doi:10.1007/3-540-45328-8_4 [12] Cuvier C., Ann. Sci. École Norm. Sup. (4) 27 pp 1– [13] DOI: 10.1007/s11464-011-0160-7 · Zbl 1294.17023 · doi:10.1007/s11464-011-0160-7 [14] DOI: 10.1090/coll/039 · doi:10.1090/coll/039 [15] Kolesnikov P. S., Sibirsk. Mat. Zh. 49 pp 322– [16] DOI: 10.1080/03081087.2012.686108 · Zbl 1273.17003 · doi:10.1080/03081087.2012.686108 [17] Loday J.-L., Enseign. Math. 39 pp 269– [18] Loday J.-L., C. R. Acad. Sci. Paris Sér. I Math. 321 pp 141– [19] DOI: 10.1007/3-540-45328-8_2 · doi:10.1007/3-540-45328-8_2 [20] DOI: 10.1007/BF01445099 · Zbl 0821.17022 · doi:10.1007/BF01445099 [21] DOI: 10.2140/pjm.2010.248.355 · Zbl 1227.17017 · doi:10.2140/pjm.2010.248.355 [22] DOI: 10.1007/BF01114640 · Zbl 0176.30901 · doi:10.1007/BF01114640 [23] Pozhidaev A. P., Sibirsk. Mat. Zh. 49 pp 870– [24] DOI: 10.1090/conm/499/09807 · doi:10.1090/conm/499/09807 [25] Pozhidaev A. P., Sibirsk. Mat. Zh. 50 pp 1356– [26] Vallette B., J. Reine Angew. Math. 620 pp 105– [27] DOI: 10.1080/00927870701865996 · Zbl 1188.17021 · doi:10.1080/00927870701865996 [28] Zhevlakov K. A., Rings that are Nearly Associative (1982) · Zbl 0487.17001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.