×

zbMATH — the first resource for mathematics

Scale-invariant boundary Harnack principle in inner uniform domains. (English) Zbl 1301.31008
Summary: We prove a scale-invariant boundary Harnack principle in inner uniform domains in the context of non-symmetric local, regular Dirichlet spaces. For inner uniform Euclidean domains, our results apply to divergence form operators that are not necessarily symmetric, and complement earlier results by H. Aikawa and A. Ancona.

MSC:
31C25 Dirichlet forms
PDF BibTeX XML Cite
Full Text: Euclid arXiv
References:
[1] H. Aikawa: Boundary Harnack principle and Martin boundary for a uniform domain , J. Math. Soc. Japan 53 (2001), 119-145. · Zbl 0976.31002 · doi:10.2969/jmsj/05310119
[2] H. Aikawa: Potential-theoretic characterizations of nonsmooth domains , Bull. London Math. Soc. 36 (2004), 469-482. · Zbl 1058.31002 · doi:10.1112/S002460930400308X
[3] H. Aikawa, T. Lundh and T. Mizutani: Martin boundary of a fractal domain , Potential Anal. 18 (2003), 311-357. · Zbl 1021.31002 · doi:10.1023/A:1021823023212
[4] A. Ancona: Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien , Ann. Inst. Fourier (Grenoble) 28 (1978), 169-213. · Zbl 0377.31001 · doi:10.5802/aif.720 · numdam:AIF_1978__28_4_169_0 · eudml:74379
[5] A. Ancona: Erratum: “Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier (Grenoble) 28 (1978), 169-213” ; in Potential Theory, Copenhagen 1979 (Copenhagen, 1979), Lecture Notes in Math. 787 , Springer, Berlin, 1980, 28. · Zbl 0377.31001 · doi:10.5802/aif.720
[6] A. Ancona: Sur la théorie du potentiel dans les domaines de John , Publ. Mat. 51 (2007), 345-396. · Zbl 1134.31009 · doi:10.5565/PUBLMAT_51207_05 · eudml:41899
[7] Z. Balogh and A. Volberg: Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications , Rev. Mat. Iberoamericana 12 (1996), 299-336. · Zbl 0857.31006 · doi:10.4171/RMI/200 · eudml:39506
[8] Z. Balogh and A. Volberg: Geometric localization, uniformly John property and separated semihyperbolic dynamics , Ark. Mat. 34 (1996), 21-49. · Zbl 0855.30022 · doi:10.1007/BF02559505
[9] R.F. Bass and K. Burdzy: A boundary Harnack principle in twisted Hölder domains , Ann. of Math. (2) 134 (1991), 253-276. · Zbl 0747.31008 · doi:10.2307/2944347
[10] R.M. Blumenthal and R.K. Getoor: Markov Processes and Potential Theory, Pure and Applied Mathematics 29 , Academic Press, New York, 1968.
[11] B.E.J. Dahlberg: Estimates of harmonic measure , Arch. Rational Mech. Anal. 65 (1977), 275-288. · Zbl 0406.28009 · doi:10.1007/BF00280445
[12] N. Eldredge and L. Saloff-Coste: Widder’s representation theorem for symmetric local Dirichlet spaces , to appear in J. Theoret. Probab., doi:10.1007/s10959-013-0484-1. · Zbl 1304.31008
[13] M. Fukushima, Y. Ōshima and M. Takeda: Dirichlet Forms and Symmetric Markov Processes, De Gruyter Studies in Mathematics 19 , de Gruyter, Berlin, 1994. · Zbl 0838.31001
[14] A. Grigor’yan and L. Saloff-Coste: Dirichlet heat kernel in the exterior of a compact set , Comm. Pure Appl. Math. 55 (2002), 93-133. · Zbl 1037.58018 · doi:10.1002/cpa.10014
[15] P. Gyrya and L. Saloff-Coste: Neumann and Dirichlet heat kernels in inner uniform domains , Astérisque 336 (2011). · Zbl 1222.58001 · smf4.emath.fr
[16] W. Hebisch and L. Saloff-Coste: On the relation between elliptic and parabolic Harnack inequalities , Ann. Inst. Fourier (Grenoble) 51 (2001), 1437-1481. · Zbl 0988.58007 · doi:10.5802/aif.1861 · numdam:AIF_2001__51_5_1437_0 · eudml:115954
[17] L. Hörmander: Hypoelliptic second order differential equations , Acta Math. 119 (1967), 147-171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[18] D. Jerison: The Poincaré inequality for vector fields satisfying Hörmander’s condition , Duke Math. J. 53 (1986), 503-523. · Zbl 0614.35066 · doi:10.1215/S0012-7094-86-05329-9
[19] D. Jerison and A. Sánchez-Calle: Subelliptic, second order differential operators ; in Complex Analysis, III (College Park, Md., 1985-86), Lecture Notes in Math. 1277 , Springer, Berlin, 1987, 46-77. · Zbl 0634.35017
[20] J.T. Kemper: A boundary Harnack principle for Lipschitz domains and the principle of positive singularities , Comm. Pure Appl. Math. 25 (1972), 247-255. · Zbl 0226.31007 · doi:10.1002/cpa.3160250303
[21] K. Kuwae, Y. Machigashira and T. Shioya: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces , Math. Z. 238 (2001), 269-316. · Zbl 1001.53017 · doi:10.1007/s002090100252
[22] J. Lierl: Scale-invariant boundary Harnack principle on inner uniform domains in fractal-type spaces , submitted. · Zbl 1246.01050
[23] J. Lierl and L. Saloff-Coste: Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms , submitted, http://arxiv.org/abs/1205.6493v3. · Zbl 1295.35240
[24] J. Lierl and L. Saloff-Coste: The Dirichlet heat kernel in inner uniform domains: local results, compact domains and non-symmetric forms , J. Funct. Anal. 266 (2014), 4189-4235. · Zbl 1295.35240 · doi:10.1016/j.jfa.2014.01.011
[25] Z.M. Ma and M. Röckner: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext, Springer-Verlag, Berlin, 1992. · Zbl 0852.16022
[26] O. Martio and J. Sarvas: Injectivity theorems in plane and space , Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383-401. \interlinepenalty10000 · Zbl 0406.30013 · doi:10.5186/aasfm.1978-79.0413
[27] U. Mosco: Composite media and asymptotic Dirichlet forms , J. Funct. Anal. 123 (1994), 368-421. · Zbl 0808.46042 · doi:10.1006/jfan.1994.1093
[28] A. Nagel, E.M. Stein and S. Wainger: Balls and metrics defined by vector fields . I. Basic properties , Acta Math. 155 (1985), 103-147. · Zbl 0578.32044 · doi:10.1007/BF02392539
[29] Y. Oshima: Semi-Dirichlet Forms and Markov Processes, De Gruyter Studies in Mathematics 48 , de Gruyter, Berlin, 2013. · Zbl 1286.60002 · doi:10.1515/9783110302066
[30] L. Saloff-Coste: Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Note Series 289 , Cambridge Univ. Press, Cambridge, 2002. · Zbl 0991.35002
[31] K.-T. Sturm: Analysis on local Dirichlet spaces . I. Recurrence, conservativeness and \(L^{p}\)-Liouville properties , J. Reine Angew. Math. 456 (1994), 173-196. · Zbl 0806.53041 · doi:10.1515/crll.1994.456.173 · crelle:GDZPPN002212110 · eudml:153666
[32] K.-T. Sturm: Analysis on local Dirichlet spaces . II. Upper Gaussian estimates for the fundamental solutions of parabolic equations , Osaka J. Math. 32 (1995), 275-312. · Zbl 0854.35015
[33] K.-T. Sturm: On the geometry defined by Dirichlet forms ; in Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1993), Progr. Probab. 36 , Birkhäuser, Basel, 1995, 231-242. · Zbl 0834.58039
[34] K.T. Sturm: Analysis on local Dirichlet spaces . III. The parabolic Harnack inequality , J. Math. Pures Appl. (9) 75 (1996), 273-297. · Zbl 0854.35016
[35] J. Väisälä: Relatively and inner uniform domains , Conform. Geom. Dyn. 2 (1998), 56-88 (electronic). · Zbl 0902.30017 · doi:10.1090/S1088-4173-98-00022-8
[36] J.M.G. Wu: Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains , Ann. Inst. Fourier (Grenoble) 28 (1978), 147-167, vi. · Zbl 0368.31006 · doi:10.5802/aif.719 · numdam:AIF_1978__28_4_147_0 · eudml:74378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.