×

Stability for a class of fractional partial integro-differential equations. (English) Zbl 1301.34095

Summary: In this paper, we deal with a class of fractional integro-differential equations involving impulsive effects and nonlocal conditions, whose principal part is of diffusion-wave type. Our aim is to establish some existence and stability results for integral solutions to the problem at hand by use of the fixed point approach.

MSC:

34K30 Functional-differential equations in abstract spaces
47H08 Measures of noncompactness and condensing mappings, \(K\)-set contractions, etc.
47H10 Fixed-point theorems
34K37 Functional-differential equations with fractional derivatives
34K20 Stability theory of functional-differential equations
34K45 Functional-differential equations with impulses
35R09 Integro-partial differential equations

References:

[1] R.R. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina and B.N. Sadovskii, Measures of noncompactness and condensing operators , Birkhäuser, Boston, 1992. · Zbl 0748.47045
[2] B. de Andrade and C. Cuevas, \(S\)-asymptotically \(\omega\)-periodic and asymptotically \(\omega\)-periodic solutions to semi-linear Cauchy problems with non-dense domain , Nonlin. Anal. 72 (2010), 3190-3208. · Zbl 1205.34074 · doi:10.1016/j.na.2009.12.016
[3] E. Bazhlekova, Fractional evolution equations in Banach spaces , Ph.D. Thesis, Eindhoven University of Technology, 2001. · Zbl 0989.34002
[4] T.A. Burton, Stability by fixed point theory for functional differential equations , Dover Publications, New York, 2006. · Zbl 1160.34001
[5] T.A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations , Dynam. Sys. Appl. 10 (2001), 89-116. · Zbl 1021.34042
[6] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem , J. Math. Anal. Appl. 162 (1991), 494-505. · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[7] J.P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations , Appl. Math. Lett. 23 (2010), 960-965. · Zbl 1198.45014 · doi:10.1016/j.aml.2010.04.016
[8] N.M. Chuong and T.D. Ke, Generalized Cauchy problems involving nonlocal and impulsive conditions , J. Evol. Equat. 12 (2012), 367-392. · Zbl 1258.35131 · doi:10.1007/s00028-012-0136-4
[9] E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations , Discrete Cont. Dynam. Syst. (2007), 277-285. · Zbl 1163.45306
[10] C. Cuevas and J. César de Souza, Existence of \(S\)-asymptotically \(\omega\)-periodic solutions for fractional order functional integro-differential equations with infinite delay , Nonlin. Anal. 72 (2010), 1683-1689. · Zbl 1197.47063 · doi:10.1016/j.na.2009.09.007
[11] C. Cuevas and J. César de Souza, \(S\)-asymptotically \(\omega\)-periodic solutions of semilinear fractional integro-differential equations , Appl. Math. Lett. 22 (2009), 865-870. · Zbl 1176.47035 · doi:10.1016/j.aml.2008.07.013
[12] R.D. Driver, Ordinary and delay differential equations , Springer-Verlag, New York, 1977. · Zbl 0374.34001
[13] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation , Osaka J. Math. 27 (1990), 309-321. · Zbl 0790.45009
[14] —, Integrodifferential equation which interpolates the heat equation and the wave equation , II, Osaka J. Math. 27 (1990), 797-804. · Zbl 0796.45010
[15] G.M. N’Guérékata, A Cauchy problem for some fractional abstract differential equation with nonlocal conditions , Nonlin. Anal. 70 (2009), 1873-1876. · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[16] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional differential equations , Springer, New York, 1993. · Zbl 0787.34002
[17] E.M. Hernández, Existence of solutions to a second order partial differential equation with nonlocal conditions , J. Differential Equations 51 (2003), 1-10. · Zbl 1041.35045
[18] R. Hilfer, ed., Applications of fractional calculus in physics , World Scientific, Singapore, 2000. · Zbl 0998.26002
[19] L. Hu, Y. Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal conditions , Semigroup Forum 79 (2009), 507-514. · Zbl 1184.45006 · doi:10.1007/s00233-009-9164-y
[20] G.-F. Jesús, Existence results and asymptotic behavior for nonlocal abstract Cauchy problems , J. Math. Anal. Appl. 338 (2008), 639-652. · Zbl 1140.34026 · doi:10.1016/j.jmaa.2007.05.045
[21] S. Ji and S. Wen, Nonlocal Cauchy problem for impulsive differential equations in Banach spaces , Int. J. Nonlinear Sci. 10 (2010), 88-95. · Zbl 1225.34082
[22] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces , in de Gruyter series in nonlinear analysis and applications , vol. 7, Walter de Gruyter, Berlin, 2001. · Zbl 0988.34001
[23] T.D. Ke, V. Obukhovskii, N.-C. Wong and J.-C. Yao, On semilinear integro-differential equations with nonlocal conditions in Banach spaces , Abstract and applied analysis 2012 (2012), Article ID 137576, 26 pages. · Zbl 1244.34082
[24] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations , Elsevier, Amsterdam, 2006. · Zbl 1092.45003
[25] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations , World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. · Zbl 0719.34002
[26] Y. Lin and J.H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem , Nonlin. Anal. 26 (1996), 1023-1033. · Zbl 0916.45014 · doi:10.1016/0362-546X(94)00141-0
[27] J.H. Liu, A remark on the mild solutions of non-local evolution equations , Semigroup Forum 66 (2003), 63-67. · Zbl 1015.37045 · doi:10.1007/s002330010158
[28] H. Liu and J.-C. Chang, Existence for a class of partial differential equations with nonlocal conditions , Nonlin. Anal. 70 (2009), 3076-3083. · Zbl 1170.34346 · doi:10.1016/j.na.2008.04.009
[29] F. Mainardi and P. Paradisi, Fractional diffusive waves , J. Comp. Acoust. 9 (2001), 1417-1436. · Zbl 1360.76272 · doi:10.1142/S0218396X01000826
[30] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion : A fractional dynamics approach , Phys. Rep. 339 (2000), 1-77. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[31] R. Metzler and J. Klafter, Accelerating Brownian motion : A fractional dynamics approach to fast diffusion , Europhys. Lett. 51 (2000), 492-498. · Zbl 0984.82032
[32] K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations , A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. · Zbl 0789.26002
[33] A. Pazy, Semigroups of linear operators and applications to partial differential equations , Springer-Verlag, New York, 1983. · Zbl 0516.47023
[34] I. Podlubny, Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , Math. Sci. Eng. 198 , Academic Press, San Diego, 1999. · Zbl 0924.34008
[35] T.I. Seidman, Invariance of the reachable set under nonlinear perturbations , SIAM J. Contr. Optim. 25 (1987), 1173-1191. · Zbl 0626.49018 · doi:10.1137/0325064
[36] R.-N. Wang and D.-H. Chen, On a class of retarded integro-differential equations with nonlocal initial conditions , Comput. Math. Appl. 59 (2010), 3700-3709. · Zbl 1208.45004 · doi:10.1016/j.camwa.2010.04.003
[37] Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations , Nonlin. Anal. 11 (2010), 4465-4475. · Zbl 1260.34017 · doi:10.1016/j.nonrwa.2010.05.029
[38] —, Existence of mild solutions for fractional neutral evolution equations , Comp. Math. Appl. 59 (2010), 1063-1077. · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[39] T. Zhu, C. Song and G. Li, Existence of mild solutions for abstract semilinear evolution equations in Banach spaces , Nonlin. Anal. 75 (2012), 177-181. \noindentstyle · Zbl 1235.34174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.