×

The classification of subfactors of index at most 5. (English) Zbl 1301.46039

Summary: A subfactor is an inclusion \(N\subset M\) of von Neumann algebras with trivial centers. The simplest example comes from the fixed points of a group action \(M^G\subset M\), and subfactors can be thought of as fixed points of more general group-like algebraic structures. These algebraic structures are closely related to tensor categories and have played important roles in knot theory, quantum groups, statistical mechanics, and topological quantum field theory. There is a measure of size of a subfactor, called the index. Remarkably, the values of the index below 4 are quantized, which suggests that it may be possible to classify subfactors of small index. Subfactors of index at most 4 were classified in the 1980s and early 1990s. The possible index values above 4 are not quantized, but once you exclude a certain family, it turns out that again the possibilities are quantized. Recently, the classification of subfactors has been extended up to index 5, and (outside of the infinite families) there are only 10 subfactors of index between 4 and 5. We give a summary of the key ideas in this classification and discuss what is known about these special small subfactors.

MSC:

46L37 Subfactors and their classification

Keywords:

subfactor; index
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Marta Asaeda and Pinhas Grossman, A quadrilateral in the Asaeda-Haagerup category, Quantum Topol. 2 (2011), no. 3, 269 – 300. · Zbl 1230.46052 · doi:10.4171/QT/22
[2] M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indices (5+\sqrt 13)/2 and (5+\sqrt 17)/2, Comm. Math. Phys. 202 (1999), no. 1, 1 – 63. · Zbl 1014.46042 · doi:10.1007/s002200050574
[3] J. W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), no. 2, 275 – 306. · JFM 54.0603.03
[4] Marta Asaeda, Galois groups and an obstruction to principal graphs of subfactors, Internat. J. Math. 18 (2007), no. 2, 191 – 202. · Zbl 1117.46041 · doi:10.1142/S0129167X07003996
[5] Marta Asaeda and Seidai Yasuda, On Haagerup’s list of potential principal graphs of subfactors, Comm. Math. Phys. 286 (2009), no. 3, 1141 – 1157. · Zbl 1180.46051 · doi:10.1007/s00220-008-0588-0
[6] Dietmar Bisch, Paramita Das, and Shamindra Kumar Ghosh, The planar algebra of group-type subfactors, J. Funct. Anal. 257 (2009), no. 1, 20 – 46. · Zbl 1172.46042 · doi:10.1016/j.jfa.2009.03.014
[7] Jens Böckenhauer, David E. Evans, and Yasuyuki Kawahigashi, Chiral structure of modular invariants for subfactors, Comm. Math. Phys. 210 (2000), no. 3, 733 – 784. · Zbl 0988.46047 · doi:10.1007/s002200050798
[8] Dietmar Bisch and Uffe Haagerup, Composition of subfactors: new examples of infinite depth subfactors, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 3, 329 – 383. · Zbl 0853.46062
[9] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), no. 4, 685 – 699. · Zbl 0771.57004 · doi:10.1016/0040-9383(92)90002-Y
[10] C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883 – 927. · Zbl 0887.57009 · doi:10.1016/0040-9383(94)00051-4
[11] Stephen Bigelow, Skein theory for the \?\?\? planar algebras, J. Pure Appl. Algebra 214 (2010), no. 5, 658 – 666. · Zbl 1192.46059 · doi:10.1016/j.jpaa.2009.07.010
[12] Dietmar Bisch, An example of an irreducible subfactor of the hyperfinite \?\?\(_{1}\) factor with rational, noninteger index, J. Reine Angew. Math. 455 (1994), 21 – 34. · Zbl 0802.46073 · doi:10.1515/crll.1994.455.21
[13] Dietmar Bisch, A note on intermediate subfactors, Pacific J. Math. 163 (1994), no. 2, 201 – 216. · Zbl 0814.46053
[14] Dietmar Bisch, On the structure of finite depth subfactors, Algebraic methods in operator theory, Birkhäuser Boston, Boston, MA, 1994, pp. 175 – 194. · Zbl 0809.46069
[15] Dietmar Bisch, Principal graphs of subfactors with small Jones index, Math. Ann. 311 (1998), no. 2, 223 – 231. · Zbl 0927.46040 · doi:10.1007/s002080050185
[16] Dietmar Bisch and Vaughan Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), no. 1, 89 – 157. · Zbl 0891.46035 · doi:10.1007/s002220050137
[17] Stephen Bigelow, Emily Peters, Scott Morrison, and Noah Snyder, Constructing the extended Haagerup planar algebra, Acta Math. 209 (2012), no. 1, 29 – 82. · Zbl 1270.46058 · doi:10.1007/s11511-012-0081-7
[18] Jocelyne Bion-Nadal, An example of a subfactor of the hyperfinite \?\?\(_{1}\) factor whose principal graph invariant is the Coxeter graph \?\(_{6}\), Current topics in operator algebras (Nara, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 104 – 113. · Zbl 0816.46063
[19] Dietmar Bisch, Remus Nicoara, and Sorin Popa, Continuous families of hyperfinite subfactors with the same standard invariant, Internat. J. Math. 18 (2007), no. 3, 255 – 267. · Zbl 1120.46047 · doi:10.1142/S0129167X07004011
[20] Stephen Bigelow and David Penneys. Principal graph stability and the jellyfish algorithm, 2013. arXiv 1208.1564, DOI 10.1007/s00208-013-0941-2, to appear in Mathematische Annalen. · Zbl 1302.46049
[21] Michael Burns, Subfactors, planar algebras and rotations, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.) – University of California, Berkeley. · Zbl 1283.46040
[22] Arnaud Brothier and Stefaan Vaes. Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group, 2013. arXiv 1309.5354. · Zbl 1342.46059
[23] J. W. S. Cassels, On a conjecture of R. M. Robinson about sums of roots of unity, J. Reine Angew. Math. 238 (1969), 112 – 131. · Zbl 0179.35203 · doi:10.1515/crll.1969.238.112
[24] A. Coste and T. Gannon, Remarks on Galois symmetry in rational conformal field theories, Phys. Lett. B 323 (1994), no. 3-4, 316 – 321. · doi:10.1016/0370-2693(94)91226-2
[25] J. H. Conway and A. J. Jones, Trigonometric Diophantine equations (On vanishing sums of roots of unity), Acta Arith. 30 (1976), no. 3, 229 – 240. · Zbl 0349.10014
[26] Frank Calegari, Scott Morrison, and Noah Snyder, Cyclotomic integers, fusion categories, and subfactors, Comm. Math. Phys. 303 (2011), no. 3, 845 – 896. · Zbl 1220.18004 · doi:10.1007/s00220-010-1136-2
[27] J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329 – 358.
[28] A. Connes, Classification of injective factors. Cases \?\?\(_{1}\), \?\?_{\infty }, \?\?\?_{\?}, \?\?=1, Ann. of Math. (2) 104 (1976), no. 1, 73 – 115. · Zbl 0343.46042 · doi:10.2307/1971057
[29] A. Connes, Periodic automorphisms of the hyperfinite factor of type II1, Acta Sci. Math. (Szeged) 39 (1977), no. 1-2, 39 – 66. · Zbl 0382.46027
[30] A. Connes, A factor of type \?\?\(_{1}\) with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151 – 153. · Zbl 0455.46056
[31] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. · Zbl 0818.46076
[32] R. Coquereaux, R. Rais, and E. H. Tahri, Exceptional quantum subgroups for the rank two Lie algebras \?\(_{2}\) and \?\(_{2}\), J. Math. Phys. 51 (2010), no. 9, 092302, 34. · Zbl 1309.17009 · doi:10.1063/1.3476319
[33] Jan de Boer and Jacob Goeree, Markov traces and \?\?\(_{1}\) factors in conformal field theory, Comm. Math. Phys. 139 (1991), no. 2, 267 – 304. · Zbl 0760.57002
[34] Philippe Di Francesco, Pierre Mathieu, and David Sénéchal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997. · Zbl 0869.53052
[35] P. Das and S. K. Ghosh. Weights on bimodules. ArXiv e-prints, November 2010. arXiv 1011.1808.
[36] Paramita Das, Shamindra Kumar Ghosh, and Ved Prakash Gupta. Perturbations of planar algebras, 2010. arXiv 1009.0186 to appear in Math. Scandinavica. · Zbl 1312.46056
[37] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, Fascicule XXV, Gauthier-Villars, Paris, 1957 (French). · Zbl 0088.32304
[38] Sergio Doplicher and John E. Roberts, A new duality theory for compact groups, Invent. Math. 98 (1989), no. 1, 157 – 218. · Zbl 0691.22002 · doi:10.1007/BF01388849
[39] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155 (1986), no. Differentsial\(^{\prime}\)naya Geometriya, Gruppy Li i Mekh. VIII, 18 – 49, 193 (Russian, with English summary); English transl., J. Soviet Math. 41 (1988), no. 2, 898 – 915. · Zbl 0641.16006 · doi:10.1007/BF01247086
[40] V. G. Drinfel\(^{\prime}\)d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798 – 820.
[41] David E. Evans and Terry Gannon, The exoticness and realisability of twisted Haagerup-Izumi modular data, Comm. Math. Phys. 307 (2011), no. 2, 463 – 512. · Zbl 1236.46055 · doi:10.1007/s00220-011-1329-3
[42] David E. Evans and Terry Gannon. Near-group fusion categories and their doubles, 2012. arXiv 1208.1500. · Zbl 1304.18017
[43] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories. http://www-math.mit.edu/ etingof/tenscat1.pdf. · Zbl 1365.18001
[44] David E. Evans and Yasuyuki Kawahigashi, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. · Zbl 0924.46054
[45] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, An analogue of Radford’s \?\(^{4}\) formula for finite tensor categories, Int. Math. Res. Not. 54 (2004), 2915 – 2933. · Zbl 1079.16024 · doi:10.1155/S1073792804141445
[46] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581 – 642. · Zbl 1125.16025 · doi:10.4007/annals.2005.162.581
[47] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), no. 1, 176 – 205. · Zbl 1210.18009 · doi:10.1016/j.aim.2010.06.009
[48] Pavel Etingof and Viktor Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627 – 654, 782 – 783 (English, with English and Russian summaries). · Zbl 1077.18005
[49] Sébastien Falguières and Sven Raum, Tensor \?*-categories arising as bimodule categories of \roman{\?\?}\(_{1}\) factors, Adv. Math. 237 (2013), 331 – 359. · Zbl 1273.46046 · doi:10.1016/j.aim.2012.12.020
[50] Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. · Zbl 0698.46050
[51] Benedict H. Gross, Eriko Hironaka, and Curtis T. McMullen, Cyclotomic factors of Coxeter polynomials, J. Number Theory 129 (2009), no. 5, 1034 – 1043. · Zbl 1183.11065 · doi:10.1016/j.jnt.2008.09.021
[52] Pinhas Grossman and Masaki Izumi, Classification of noncommuting quadrilaterals of factors, Internat. J. Math. 19 (2008), no. 5, 557 – 643. · Zbl 1153.46037 · doi:10.1142/S0129167X08004807
[53] J. J. Graham and G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2) 44 (1998), no. 3-4, 173 – 218. · Zbl 0964.20002
[54] Pinhas Grossman and Noah Snyder. The Brauer-Picard group of the Asaeda-Haagerup fusion categories, 2012. arXiv 1202.4396. · Zbl 1354.46057
[55] Pinhas Grossman and Noah Snyder, Quantum subgroups of the Haagerup fusion categories, Comm. Math. Phys. 311 (2012), no. 3, 617 – 643. · Zbl 1250.46042 · doi:10.1007/s00220-012-1427-x
[56] Uffe Haagerup, Principal graphs of subfactors in the index range 4<[\?:\?]<3+\sqrt 2, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp. 1 – 38. · Zbl 0933.46058
[57] Richard Han, A Construction of the ”2221” Planar Algebra, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.) – University of California, Riverside.
[58] Jeon Hee Hong, Subfactors with principal graph \?\?\textonesuperior \?\(_{6}\), Acta Appl. Math. 40 (1995), no. 3, 255 – 264. · Zbl 0827.46051 · doi:10.1007/BF00992723
[59] Seung-Moon Hong, Eric Rowell, and Zhenghan Wang, On exotic modular tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 1049 – 1074. · Zbl 1160.18302 · doi:10.1142/S0219199708003162
[60] Masaki Izumi, Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, Subfactors of index less than 5, Part 3: Quadruple points, Comm. Math. Phys. 316 (2012), no. 2, 531 – 554. · Zbl 1272.46051 · doi:10.1007/s00220-012-1472-5
[61] Masaki Izumi and Yasuyuki Kawahigashi, Classification of subfactors with the principal graph \?\?\textonesuperior \?_{\?}, J. Funct. Anal. 112 (1993), no. 2, 257 – 286. · Zbl 0791.46039 · doi:10.1006/jfan.1993.1033
[62] Kei Ikeda, Numerical evidence for flatness of Haagerup’s connections, J. Math. Sci. Univ. Tokyo 5 (1998), no. 2, 257 – 272. · Zbl 0910.46044
[63] Masaki Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953 – 994. · Zbl 0765.46048 · doi:10.2977/prims/1195169007
[64] Masaki Izumi, On flatness of the Coxeter graph \?\(_{8}\), Pacific J. Math. 166 (1994), no. 2, 305 – 327. · Zbl 0822.46073
[65] Masaki Izumi, Goldman’s type theorems in index theory, Operator algebras and quantum field theory (Rome, 1996) Int. Press, Cambridge, MA, 1997, pp. 249 – 269. · Zbl 0915.46054
[66] Masaki Izumi, The structure of sectors associated with Longo-Rehren inclusions. I. General theory, Comm. Math. Phys. 213 (2000), no. 1, 127 – 179. · Zbl 1032.46529 · doi:10.1007/s002200000234
[67] Masaki Izumi, The structure of sectors associated with Longo-Rehren inclusions. II. Examples, Rev. Math. Phys. 13 (2001), no. 5, 603 – 674. · Zbl 1033.46506 · doi:10.1142/S0129055X01000818
[68] Masaki Izumi, Characterization of isomorphic group-subgroup subfactors, Int. Math. Res. Not. 34 (2002), 1791 – 1803. · Zbl 1032.46073 · doi:10.1155/S107379280220402X
[69] Michio Jimbo, A \?-difference analogue of \?(\?) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63 – 69. · Zbl 0587.17004 · doi:10.1007/BF00704588
[70] A. J. Jones, Sums of three roots of unity, Proc. Cambridge Philos. Soc. 64 (1968), 673 – 682. · Zbl 0162.06804
[71] Vaughan F. R. Jones, Actions of finite groups on the hyperfinite type \?\?\(_{1}\) factor, Mem. Amer. Math. Soc. 28 (1980), no. 237, v+70. · Zbl 0454.46045 · doi:10.1090/memo/0237
[72] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1 – 25. · Zbl 0508.46040 · doi:10.1007/BF01389127
[73] Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103 – 111. · Zbl 0564.57006
[74] Vaughan F. R. Jones. Planar algebras, I, 1999. arXiv math.QA/9909027. · Zbl 1257.46033
[75] Vaughan F. R. Jones, The planar algebra of a bipartite graph, Knots in Hellas ’98 (Delphi), Ser. Knots Everything, vol. 24, World Sci. Publ., River Edge, NJ, 2000, pp. 94 – 117. · Zbl 1021.46047 · doi:10.1142/9789812792679_0008
[76] Vaughan F. R. Jones, The annular structure of subfactors, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp. 401 – 463. · Zbl 1019.46036
[77] Vaughan F. R. Jones. Quadratic tangles in planar algebras, 2003. arXiv 1007.1158, to appear in Duke Math. J. · Zbl 1257.46033
[78] Vaughan F. R. Jones, Two subfactors and the algebraic decomposition of bimodules over \?\?\(_{1}\) factors, Acta Math. Vietnam. 33 (2008), no. 3, 209 – 218. · Zbl 1182.46049
[79] Vaughan F. R. Jones. Notes on planar algebras. http://math.berkeley.edu/ vfr/VANDERBILT/pl21.pdf, 2011.
[80] Vaughan F. R. Jones and David Penneys, The embedding theorem for finite depth subfactor planar algebras, Quantum Topol. 2 (2011), no. 3, 301 – 337. · Zbl 1230.46055 · doi:10.4171/QT/23
[81] André Joyal and Ross Street, The geometry of tensor calculus. I, Adv. Math. 88 (1991), no. 1, 55 – 112. · Zbl 0738.18005 · doi:10.1016/0001-8708(91)90003-P
[82] André Joyal and Ross Street, An introduction to Tannaka duality and quantum groups, Category theory (Como, 1990) Lecture Notes in Math., vol. 1488, Springer, Berlin, 1991, pp. 413 – 492. · Zbl 0745.57001 · doi:10.1007/BFb0084235
[83] André Joyal and Ross Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), no. 1, 43 – 51. · Zbl 0726.18004 · doi:10.1016/0022-4049(91)90039-5
[84] Egbert R. Van Kampen, On Some Lemmas in the Theory of Groups, Amer. J. Math. 55 (1933), no. 1-4, 268 – 273. · Zbl 0006.39204 · doi:10.2307/2371129
[85] Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395 – 407. · Zbl 0622.57004 · doi:10.1016/0040-9383(87)90009-7
[86] Yasuyuki Kawahigashi, Classification of paragroup actions in subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), no. 3, 481 – 517. · Zbl 0837.46046 · doi:10.2977/prims/1195164051
[87] Yasuyuki Kawahigashi, On flatness of Ocneanu’s connections on the Dynkin diagrams and classification of subfactors, J. Funct. Anal. 127 (1995), no. 1, 63 – 107. · Zbl 0829.46048 · doi:10.1006/jfan.1995.1003
[88] D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71 – 74 (Russian).
[89] M. Kreĭn, A principle of duality for bicompact groups and quadratic block algebras, Doklady Akad. Nauk SSSR (N.S.) 69 (1949), 725 – 728 (Russian).
[90] L. Kronecker. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math., 53:173-175, 1857. ZBL an:053.1389cj, available at http://resolver.sub.uni-goettingen.de/purl?GDZPPN002149613.
[91] Vijay Kodiyalam and V. S. Sunder, The subgroup-subfactor, Math. Scand. 86 (2000), no. 1, 45 – 74. · Zbl 1032.46530 · doi:10.7146/math.scand.a-14281
[92] Yevgenia Kashina, Yorck Sommerhäuser, and Yongchang Zhu, On higher Frobenius-Schur indicators, Mem. Amer. Math. Soc. 181 (2006), no. 855, viii+65. · Zbl 1163.16029 · doi:10.1090/memo/0855
[93] Greg Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109 – 151. · Zbl 0870.17005
[94] Zhengwei Liu. Composed inclusions of \( {A}_3\) and \( {A}_4\) subfactors, 2013. arXiv 1308.5691.
[95] Roberto Longo, A duality for Hopf algebras and for subfactors. I, Comm. Math. Phys. 159 (1994), no. 1, 133 – 150. · Zbl 0802.46075
[96] J. H. Loxton, On the maximum modulus of cyclotomic integers, Acta Arith. 22 (1972), 69 – 85. · Zbl 0217.04203
[97] R. Longo and J. E. Roberts, A theory of dimension, \?-Theory 11 (1997), no. 2, 103 – 159. · Zbl 0874.18005 · doi:10.1023/A:1007714415067
[98] Shahn Majid, Representations, duals and quantum doubles of monoidal categories, Proceedings of the Winter School on Geometry and Physics (Srní, 1990), 1991, pp. 197 – 206. · Zbl 0762.18005
[99] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. · Zbl 0285.55012
[100] John McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 183 – 186.
[101] Scott Morrison, Masaki Izumi, and David Penneys. Fusion categories between \( \mathcal {C} \boxtimes \mathcal {D}\) and \( \mathcal {C} *\mathcal {D}\), 2013. arXiv 1308.5723.
[102] Scott Morrison. An obstruction to subfactor principal graphs from the graph planar algebra embedding theorem, 2013. arXiv 1302.5148, to appear in Bull. London Math. Soc. · Zbl 1303.46051
[103] Scott Morrison and David Penneys. Constructing spoke subfactors using the jellyfish algorithm, 2012. arXiv 1208.3637, to appear in Trans. Amer. Math. Soc. · Zbl 1360.46054
[104] Scott Morrison and Emily Peters. The little desert? Some subfactors with index in the interval \( (5,3+\sqrt {5})\), 2012. arXiv 1205.2742. · Zbl 1314.46074
[105] Scott Morrison, David Penneys, Emily Peters, and Noah Snyder, Subfactors of index less than 5, Part 2: Triple points, Internat. J. Math. 23 (2012), no. 3, 1250016, 33. · Zbl 1246.46054 · doi:10.1142/S0129167X11007586
[106] Scott Morrison, Emily Peters, and Noah Snyder, Skein theory for the \?_{2\?} planar algebras, J. Pure Appl. Algebra 214 (2010), no. 2, 117 – 139. · Zbl 1191.46051 · doi:10.1016/j.jpaa.2009.04.010
[107] Scott Morrison and Noah Snyder, Non-cyclotomic fusion categories, Trans. Amer. Math. Soc. 364 (2012), no. 9, 4713 – 4733. · Zbl 1284.18016
[108] Scott Morrison and Noah Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer, Comm. Math. Phys. 312 (2012), no. 1, 1 – 35. · Zbl 1246.46055 · doi:10.1007/s00220-012-1426-y
[109] Michael Müger, From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180 (2003), no. 1-2, 81 – 157. · Zbl 1033.18002 · doi:10.1016/S0022-4049(02)00247-5
[110] Scott Morrison and Kevin Walker. Planar algebras, connections, and Turaev-Viro theory. Preprint available at http://tqft.net/tvc. · Zbl 1256.18007
[111] Siu-Hung Ng and Peter Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, Adv. Math. 211 (2007), no. 1, 34 – 71. · Zbl 1138.16017 · doi:10.1016/j.aim.2006.07.017
[112] Siu-Hung Ng and Peter Schauenburg, Higher Frobenius-Schur indicators for pivotal categories, Hopf algebras and generalizations, Contemp. Math., vol. 441, Amer. Math. Soc., Providence, RI, 2007, pp. 63 – 90. · Zbl 1153.18008 · doi:10.1090/conm/441/08500
[113] Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119 – 172. · Zbl 0696.46048
[114] Adrian Ocneanu, Operator algebras, topology and subgroups of quantum symmetry — construction of subgroups of quantum groups, Taniguchi Conference on Mathematics Nara ’98, Adv. Stud. Pure Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, pp. 235 – 263. · Zbl 1021.46053
[115] Shingo Okamoto, Invariants for subfactors arising from Coxeter graphs, Current topics in operator algebras (Nara, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 84 – 103. · Zbl 0809.46072
[116] Victor Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003), no. 2, 177 – 206. · Zbl 1044.18004 · doi:10.1007/s00031-003-0515-6
[117] Victor Ostrik, On formal codegrees of fusion categories, Math. Res. Lett. 16 (2009), no. 5, 895 – 901. · Zbl 1204.18003 · doi:10.4310/MRL.2009.v16.n5.a11
[118] David Penneys. Chirality and principal graph obstructions, 2013. arXiv 1307.5890. · Zbl 1326.46049
[119] Emily Peters, A planar algebra construction of the Haagerup subfactor, Internat. J. Math. 21 (2010), no. 8, 987 – 1045. · Zbl 1203.46039 · doi:10.1142/S0129167X10006380
[120] Sorin Popa, Sousfacteurs, actions des groupes et cohomologie, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 12, 771 – 776 (French, with English summary). · Zbl 0684.46051
[121] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990), no. 1, 19 – 43. · Zbl 0757.46054 · doi:10.1007/BF01231494
[122] Sorin Teodor Popa, Subfactors and classification in von Neumann algebras, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 987 – 996. · Zbl 0819.46048
[123] Sorin Popa, Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), no. 2, 375 – 405. · Zbl 0787.46047 · doi:10.1007/BF01231293
[124] Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163 – 255. · Zbl 0853.46059 · doi:10.1007/BF02392646
[125] Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427 – 445. · Zbl 0831.46069 · doi:10.1007/BF01241137
[126] Sorin Popa, Some ergodic properties for infinite graphs associated with subfactors, Ergodic Theory Dynam. Systems 15 (1995), no. 5, 993 – 1003. · Zbl 0832.46058 · doi:10.1017/S0143385700009731
[127] Sorin Popa, On a class of type \?\?\(_{1}\) factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809 – 899. · Zbl 1120.46045 · doi:10.4007/annals.2006.163.809
[128] Sorin Popa, Strong rigidity of \?\?\(_{1}\) factors arising from malleable actions of \?-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369 – 408. · Zbl 1120.46043 · doi:10.1007/s00222-006-0501-4
[129] Sorin Popa, Strong rigidity of \?\?\(_{1}\) factors arising from malleable actions of \?-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409 – 451. · Zbl 1120.46044 · doi:10.1007/s00222-006-0502-3
[130] Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445 – 477. · Zbl 1132.46038 · doi:10.4171/022-1/18
[131] Roger Penrose and Wolfgang Rindler, Spinors and space-time. Vol. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984. Two-spinor calculus and relativistic fields. · Zbl 0538.53024
[132] Sorin Popa and Dimitri Shlyakhtenko, Universal properties of \?(\?_{\infty }) in subfactor theory, Acta Math. 191 (2003), no. 2, 225 – 257. · Zbl 1079.46043 · doi:10.1007/BF02392965
[133] David Penneys and James E. Tener, Subfactors of index less than 5, Part 4: Vines, Internat. J. Math. 23 (2012), no. 3, 1250017, 18. · Zbl 1246.46056 · doi:10.1142/S0129167X11007641
[134] Florin Rădulescu, An invariant for subfactors in the von Neumann algebra of a free group, Free probability theory (Waterloo, ON, 1995) Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 213 – 239. · Zbl 0934.46059
[135] N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547 – 597. · Zbl 0725.57007 · doi:10.1007/BF01239527
[136] John Schou. Commuting squares and index for subfactors. Ph.D. thesis, Odense Universitet, 1990. arXiv 1304.5907.
[137] James B. Shearer, On the distribution of the maximum eigenvalue of graphs, Linear Algebra Appl. 114/115 (1989), 17 – 20. · Zbl 0672.05059 · doi:10.1016/0024-3795(89)90449-7
[138] Noah Snyder. A rotational approach to triple point obstructions, 2012. arXiv 1207.5090, in press at Analysis & PDE. · Zbl 1297.46044
[139] Roman Sasyk and Asger Törnquist, The classification problem for von Neumann factors, J. Funct. Anal. 256 (2009), no. 8, 2710 – 2724. · Zbl 1173.46042 · doi:10.1016/j.jfa.2008.11.010
[140] Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. · Zbl 0436.46043
[141] Tadao Tannaka. Über den Dualitätssatz der nichtkommutativen topologischen Gruppen. Tohoku Math. J., 45:1-12, 1938. ZBL 0020.00904, available at http://jlc.jst.go.jp/JST.Journalarchive/tmj1911/45.1. · Zbl 0020.00904
[142] Stefaan Vaes, Factors of type II\(_{1}\) without non-trivial finite index subfactors, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2587 – 2606. · Zbl 1172.46043
[143] H. Weber, Theorie der Abel’schen Zahlkörper, Acta Math. 8 (1886), no. 1, 193 – 263 (German). · JFM 18.0055.04 · doi:10.1007/BF02417089
[144] Hans Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5 – 9. · Zbl 0622.47019
[145] Hans Wenzl, \?* tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261 – 282. · Zbl 0888.46043
[146] Hermann Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J., 1939. · Zbl 0020.20601
[147] Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351 – 399. · Zbl 0667.57005
[148] S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613 – 665. · Zbl 0627.58034
[149] S. L. Woronowicz, Twisted \?\?(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117 – 181. · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[150] Feng Xu, New braided endomorphisms from conformal inclusions, Comm. Math. Phys. 192 (1998), no. 2, 349 – 403. · Zbl 0908.46044 · doi:10.1007/s002200050302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.