×

Coefficient and pre-Schwarzian norm estimates for a class of generalized doubly close-to-convex functions. (English) Zbl 1302.30019

Summary: In this paper, we consider a new class \(\mathcal{C}(\phi, \psi, \eta)\) of analytic functions defined by means of subordination. Coefficient bounds, Fekete-Szegő problem and norm estimates of the pre-Schwarzian derivatives of functions belonging to the class \(\mathcal{C}(\phi, \psi, \eta)\) are investigated. A class of multiple close-to-convex functions is also considered.

MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.2969/jmsj/05930707 · Zbl 1132.30007
[2] Darus M., Int. Math. J. 4 pp 561– (2003)
[3] DOI: 10.1016/j.jmaa.2003.08.050 · Zbl 1039.30004
[4] Duren P. L., Univalent Functions (1983)
[5] DOI: 10.1112/jlms/s1-8.2.85 · Zbl 0006.35302
[6] Goodman A. W., Univalent Functions 2 (1983)
[7] Janowski W., Ann. Polon. Math. 23 pp 159– (1973)
[8] Janowski W., Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys. 21 pp 17– (1973)
[9] DOI: 10.1016/j.amc.2012.01.070 · Zbl 1251.30018
[10] DOI: 10.4064/ap101-1-8 · Zbl 1220.30065
[11] DOI: 10.3792/pjaa.76.95 · Zbl 0965.30006
[12] DOI: 10.1216/rmjm/1030539616 · Zbl 1034.30009
[13] DOI: 10.1017/S0013091504000306 · Zbl 1112.30012
[14] Koeph W., Proc. Amer. Math. Soc. 101 pp 89– (1987)
[15] DOI: 10.1016/j.jmaa.2008.06.009 · Zbl 1152.30012
[16] DOI: 10.1080/17476930008815285 · Zbl 1021.30008
[17] DOI: 10.1090/S0002-9947-1965-0174720-4
[18] Rogosinski W. W., Proc. London Math. Soc. 48 pp 48– (1943)
[19] DOI: 10.4153/CJM-1985-004-7 · Zbl 0574.30015
[20] DOI: 10.1155/S0161171283000393 · Zbl 0526.30013
[21] DOI: 10.1080/17476930108815351 · Zbl 1021.30014
[22] DOI: 10.14492/hokmj/1351001086 · Zbl 0926.30009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.