# zbMATH — the first resource for mathematics

Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. (English) Zbl 1302.35218
The authors study regularity and stability properties of the free boundary problem $\partial_t + \partial_z(h^2\partial^3_zh) = 0, \qquad t > 0, z \in (Z_0(t),\infty)$ such that $h = \partial_zh = 0, \qquad \text{for } t > 0, z = Z_0(t),$ where $\dot Z_0(t) = \lim_{z \searrow Z_0(t)}h\partial^3_zh \qquad \text{for } t > 0.$ The equation describes a thin-film evolution that follows from the Navier-Stokes equations of a two-dimensional viscous thin film on a one-dimensional flat solid in a lubrication approximation. The function $$h(t,z)$$ describe the height of the film, $$Z_0(t)$$ denotes the position of the free boundary (the contact line).
It is one of the main aims is to show that the traveling wave solution $$H_{TW} = x^{3/2}$$ with $$x = z - V_0t$$, $$\dot Z_0 = V_0$$ is stable under small perturbations. Perturbations of the traveling wave are given by $$u(t,x) = F(t,x) -$$ where $$F(t,x) = 1/\partial_xZ(t,x)$$ so that the traveling wave is the constant solution $$F = F_{TW} \equiv 1$$. Here $$Z(t,x)$$ is defined by the hodograph transformation $$h(t,Z(t,x)) = x^{3/2}$$. As a result, the following degenerated parabolic initial value problem for $$u(t,x)$$ is derived $x\partial_tu + p(D)u = N(u), \qquad t > 0, x > 0$ under the initial condition $$u(0,x) = u_0(x),\;x > 0$$. Here $$D$$ denotes the scaling-invariant logarithmic derivative, $$p$$ is a fourth-order polynomial given by $$p(\zeta) = \zeta^4 + 2\zeta^3 - (9/8)\zeta = (\zeta + 3/8)(\zeta + \beta + 1/2)\zeta(\zeta - \beta)$$ with the irrational number $$\beta = (\sqrt{13} - 1)/4$$, the nonlinearity is $$N(u) = p(D)u - M(1 + u,\dots,1 + u)$$ where $$M$$ is the $$5$$-linear form $M(F_1,\dots,F_5) = F_1F_2D(D + 3/2)F_3(D - 1/2)F_4(D + 1/2)F_5.$ The authors prove the global existence and uniqueness close to traveling waves. The main ingredients are maximal regularity estimates in weighted $$L^2$$-spaces for the linearized evolution, after suitable substraction of $$a(t) + b(t)x^{\beta}$$ terms.

##### MSC:
 35K65 Degenerate parabolic equations 35K35 Initial-boundary value problems for higher-order parabolic equations 35Q35 PDEs in connection with fluid mechanics 35R35 Free boundary problems for PDEs 76A20 Thin fluid films 76D08 Lubrication theory 35K59 Quasilinear parabolic equations 35C07 Traveling wave solutions 35B35 Stability in context of PDEs
Full Text:
##### References:
 [1] de Gennes, P. G., Wetting: statics and dynamics, Rev. Modern Phys., 57, 827-863, (1985) [2] Oron, A.; Davis, S. H.; Bankoff, S. G., Long-scale evolution of thin liquid films, Rev. Modern Phys., 69, 931-980, (1997) [3] Giacomelli, L.; Gnann, M.; Otto, F., Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, European J. Appl. Math., 24, 735-760, (2013) · Zbl 1292.35067 [4] Bernis, F.; Peletier, L. A.; Williams, S. M., Source type solutions of a fourth order nonlinear degenerate parabolic equation, Nonlinear Anal., 18, 3, 217-234, (1992) · Zbl 0778.35056 [5] Giacomelli, L.; Knüpfer, H.; Otto, F., Smooth zero-contact-angle solutions to a thin-film equation around the steady state, J. Differential Equations, 245, 6, 1454-1506, (2008) · Zbl 1159.35039 [6] Giacomelli, L.; Knüpfer, H., A free boundary problem of fourth order: classical solutions in weighted Hölder spaces, Comm. Partial Differential Equations, 35, 11, 2059-2091, (2010) · Zbl 1223.35208 [7] John, D., Uniqueness and stability near stationary solutions for the thin-film equation in multiple space dimensions with small initial Lipschitz perturbations, (2013), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, PhD thesis [8] John, D., On uniqueness of weak solutions for the thin-film equation, e-prints · Zbl 1322.35084 [9] Giacomelli, L.; Otto, F., Rigorous lubrication approximation, Interfaces Free Bound., 5, 4, 483-529, (2003) · Zbl 1039.76012 [10] Knüpfer, H.; Masmoudi, N., Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge, Comm. Math. Phys., 320, 2, 395-424, (2013) · Zbl 1316.35251 [11] Knüpfer, H.; Masmoudi, N., Darcy’s flow with prescribed contact angle - well-posedness and lubrication approximation, Arch. Ration. Mech. Anal., (2014), in press [12] Knüpfer, H., Well-posedness for the Navier slip thin-film equation in the case of partial wetting, Comm. Pure Appl. Math., 64, 9, 1263-1296, (2011) · Zbl 1227.35146 [13] H. Knüpfer, Well-posedness for a class of thin-film equations with general mobility in the regime of partial wetting, preprint. [14] Bernis, F.; Friedman, A., Higher order nonlinear degenerate parabolic equations, J. Differential Equations, 83, 1, 179-206, (1990) · Zbl 0702.35143 [15] Beretta, E.; Bertsch, M.; Dal Passo, R., Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation, Arch. Ration. Mech. Anal., 129, 2, 175-200, (1995) · Zbl 0827.35065 [16] Bertozzi, A. L.; Pugh, M., The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Comm. Pure Appl. Math., 49, 2, 85-123, (1996) · Zbl 0863.76017 [17] Dal Passo, R.; Garcke, H.; Grün, G., On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29, 2, 321-342, (1998), (electronic) · Zbl 0929.35061 [18] Grün, G., Droplet spreading under weak slippage—existence for the Cauchy problem, Comm. Partial Differential Equations, 29, 11-12, 1697-1744, (2004) · Zbl 1156.35388 [19] Bernis, F., Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equations, 1, 3, 337-368, (1996) · Zbl 0846.35058 [20] Bernis, F., Finite speed of propagation for thin viscous flows when $$2 \leqslant n < 3$$, C. R. Acad. Sci. Paris Sér. I Math., 322, 12, 1169-1174, (1996) · Zbl 0853.76018 [21] Hulshof, J.; Shishkov, A. E., The thin film equation with $$2 \leqslant n < 3$$: finite speed of propagation in terms of the $$L^1$$-norm, Adv. Differential Equations, 3, 5, 625-642, (1998) · Zbl 0953.35072 [22] Bertsch, M.; Dal Passo, R.; Garcke, H.; Grün, G., The thin viscous flow equation in higher space dimensions, Adv. Differential Equations, 3, 3, 417-440, (1998) · Zbl 0954.35035 [23] Dal Passo, R.; Giacomelli, L.; Grün, G., A waiting time phenomenon for thin film equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 30, 2, 437-463, (2001), URL: · Zbl 1024.35051 [24] Carrillo, J. A.; Toscani, G., Long-time asymptotics for strong solutions of the thin film equation, Comm. Math. Phys., 225, 3, 551-571, (2002) · Zbl 0990.35054 [25] Grün, G., Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the multi-dimensional case, Interfaces Free Bound., 4, 3, 309-323, (2002) · Zbl 1056.35072 [26] Grün, G., Droplet spreading under weak slippage: the waiting time phenomenon, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 2, 255-269, (2004) · Zbl 1062.35012 [27] Giacomelli, L.; Grün, G., Lower bounds on waiting times for degenerate parabolic equations and systems, Interfaces Free Bound., 8, 1, 111-129, (2006) · Zbl 1100.35058 [28] Fischer, J., Optimal lower bounds on asymptotic support propagation rates for the thin-film equation, J. Differential Equations, 255, 10, 3127-3149, (2013) · Zbl 1328.35331 [29] Fischer, J., Upper bounds on waiting times for the thin-film equation: the case of weak slippage, Arch. Ration. Mech. Anal., 211, 3, 771-818, (2014) · Zbl 1293.35241 [30] Otto, F., Lubrication approximation with prescribed nonzero contact angle, Comm. Partial Differential Equations, 23, 11-12, 2077-2164, (1998) · Zbl 0923.35211 [31] Bertsch, M.; Giacomelli, L.; Karali, G., Thin-film equations with “partial wetting” energy: existence of weak solutions, Phys. D, 209, 1-4, 17-27, (2005) · Zbl 1079.76011 [32] Ansini, L.; Giacomelli, L., Doubly nonlinear thin-film equations in one space dimension, Arch. Ration. Mech. Anal., 173, 1, 89-131, (2004) · Zbl 1064.76012 [33] Giacomelli, L.; Shishkov, A., Propagation of support in one-dimensional convected thin-film flow, Indiana Univ. Math. J., 54, 4, 1181-1215, (2005) · Zbl 1088.35050 [34] Koch, H., Non-Euclidean singular intergrals and the porous medium equation, (1999), Ruprecht-Karls-Universität Heidelberg Heidelberg, Habilitation thesis [35] Aronson, D. G.; Vázquez, J. L., Eventual $$C^\infty$$-regularity and concavity for flows in one-dimensional porous media, Arch. Ration. Mech. Anal., 99, 4, 329-348, (1987) · Zbl 0642.76108 [36] Angenent, S., Local existence and regularity for a class of degenerate parabolic equations, Math. Ann., 280, 3, 465-482, (1988) · Zbl 0619.35114 [37] Daskalopoulos, P.; Hamilton, R., Regularity of the free boundary for the porous medium equation, J. Amer. Math. Soc., 11, 4, 899-965, (1998) · Zbl 0910.35145 [38] Prüss, J.; Simonett, G., Maximal regularity for degenerate evolution equations with an exponential weight function, (Functional Analysis and Evolution Equations, (2008), Birkhäuser Basel), 531-545 · Zbl 1169.35318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.