zbMATH — the first resource for mathematics

Solvability of vector integro-differential equations of convolution type on the semiaxis. (English. Russian original) Zbl 1302.45017
J. Contemp. Math. Anal., Armen. Acad. Sci. 43, No. 5, 305-316 (2008); translation from Izv. Nats. Akad. Nauk Armen., Mat. 43, No. 5, 73-82 (2008).
Summary: The paper deals with vector integro-differential equation of convolution type that have the form $- \frac{{d^2 f_i }} {{dx^2 }} + a_i f_i (x) = g_i (x) + \sum\limits_{j = 1}^N {\int\limits_0^\infty {K_{ij} (x - t)f_j (t)dt, } \quad i = 1,2, \dots,N,}$ where $$\vec f = (f_{1}, f_{2}, \dots, f_{N})^{T}$$ is the unknown vector-function, $$a_{i}$$ are nonnegative numbers, $$\vec g = (g_{1}, g_{2}, \dots, g_{N})^{T} \in L_{1}^{{\times}N} (0,+\infty) \equiv L_{1} (0,+\infty) {\times}\dots {\times} L (0,+\infty)$$ is the independent term of the equation with nonnegative components and $$0 \leq K_{ij} \in L_{1} (-\infty,+\infty)$$, $$i, j = 1, 2,\dots, N$$ are the kernel-functions. These equations have significant applications in the wave non-local interaction theory. Using some special factorization methods, solvability of the system is proved in different functional spaces.
MSC:
 45J05 Integro-ordinary differential equations 45E05 Integral equations with kernels of Cauchy type 45G05 Singular nonlinear integral equations 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 47G20 Integro-differential operators
Full Text:
References:
 [1] G. A. Baraff, ”Transmission of Electromagnetic Waves Through a conducting slab. The Two-Sided Wiener-Hopf Solution,” J.Math. Phys. 9(3), 372–384 (1968). · Zbl 0164.42903 · doi:10.1063/1.1664589 [2] J. Casti and R. Kalaba, Embedding Methods in Applied Mathematics (Addison-Wesley, Reading, Mass.-London-Amsterdam, 1973). · Zbl 0265.65001 [3] E. Volterra, ”On Elastic Continual Hereditary Characteristics,” Journal of Applied Mechanics 18, 273–279 (1951). · Zbl 0043.39405 [4] B.D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation (Cambridge University Press, 1981). [5] N. B. Yengibaryan and A. Kh. Khachatryan, ”Integro-Differential Equation of Non-Local Wave Interaction,” Mat. Sbornik 198(3), 839–855 (2007). · Zbl 1155.45003 · doi:10.1070/SM2007v198n06ABEH003863 [6] Kh. A. Khachatryan and E. A. Khachatryan, ”Solvability of Convolution Type Integro-Differential Equation on R,” Izv. NAN Armenii, Matematika [Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)] 42(3) 161–175 (2007). · Zbl 1151.45008 [7] Kh. A. Khachatryan and M. G. Kostanyan, ”Factorization of Convolution Type Vector Integro-Differential Equations,” Izv. NAN Armenii, Matematika [Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)] 43(3) 145–156 (2008). · Zbl 1153.45008 [8] M. A. Krasnoselskii, P. P. Zabreyko, E. I. Pustilnik and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions (Nauka, Moscow, 1966). [9] M. A. Krasnoselskii, Positive solutions of Operator Equations (Fizmatizdom, Moscow, 1962). [10] N. B. Yengibaryan and A. A. Harutyunyan, ”Integral Equations on the Half-Line With Difference Kernels and Non-Linear Functional Equations,” Mat. Sbornik 97(1), 35–58 (1975). [11] L.G. Arabajyan and N. B. Yengibaryan, ”Convolution Equations andNon-Linear functional equations,” Itogi Nauki i Tekhniki, Mat. Analiz 22, 175–242 (1984). [12] A. N. Kolmogorov and V. S. Fomin, Elements of Function Theory and Functional Analysis (Nauka, Moscow, 1981). · Zbl 0501.46002 [13] N. B. Yengibaryan and L. G. Arabajyan, ”Systems of Wiener-Hopf Integral Equations and Non-Linear Equations of factorization,” Mat. Sbornik 124(6), 189–216 (1984). [14] N. B. Yengibaryan, ”Renewal Theorems for a Systemof Integral Equations,” Sbornik, Mathematics 189(12), 1795–1808 (1998). · Zbl 0932.45005 · doi:10.1070/SM1998v189n12ABEH000360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.