Convergence of linear functionals of the Grenander estimator under misspecification. (English) Zbl 1302.62045

Convergence rates of Grenander estimation of the true misspecified density are treated.
Let \({\mathcal F}\) be the class of decreasing densities on \(\mathbb{R}_+\). Let \(X_1,\dots,X_n\) be an i.i.d. sequence of random variables with density \(f_0\in{\mathcal F}\). Define the KL projection of \(f_0\) as \[ \widehat f_0=\text{argmin}_{g\in{\mathcal F}}\int^\infty_0 f_0(x)\log{f_0(x)\over g(x)}\,dx \] and the Grenander estimation of \(f_0\) as \[ \widehat f_n= \text{argmin}_{g\in{\mathcal F}} \int^\infty_0 \log g(x)\,dF_n(x), \] where \(F_n\) is the empirical distribution function.
Let \(F_0(x)= \int^x_0 f_0(u)\,du\) and \(\widehat F_0\) be the least concave majorant of \(F_0\). Put \({\mathcal M}= \{x\geq 0: \widehat F_0(x)> F(x)\}\) and \({\mathcal W}=\{x\geq 0:\widehat F_0(x)= F(x)\}\). Let \([a, b]\) be the largest interval containing \(x_0\) such that \(\widehat F_0(x)\) is linear on the interval. Let \(\text{gren}_{[a,b]}(g)\) be the (left) derivative of the least concave majorant \(g\) restricted to \([a, b]\). Further, let \(U\) denote a standard Brownian bridge process on \([0, 1]\), \(U_{F_0}(x)= U(F_0(x))\) and \(U^{\text{mod}}_{F_0}(u) = U_{F_0}(u)\) if \(u\in [a,b]\cap{\mathcal W}\), \(U^{\text{mod}}_{F_0}(u) = -\infty\) if \(u\in[a, b]\cap{\mathcal M}\).
The author proves that as \(n\to\infty\) \[ \sqrt{n}(\widehat f_n(x_0)-\widehat f_0(x_0))\to \text{gren}_{[a,b]}(U^{\text{mod}}_{F_0}(x_0)) \] and, in addition, if \([a, b]\cap{\mathcal W}= \{a, b\}\), \[ \sqrt{n}(\widehat f_n(x_0)-\widehat f_0(x_0))\to \sigma Z, \] where \(Z\) is a standard normal random variable and \(\sigma\) is some constant defined by \(\widehat f_0(x_0)\).
The author also shows \(\sqrt{n}\)-convergence of linear functionals of the type
\[ \hat \mu_n(g) = \int_0^\infty g(x) \hat f_n(x) dx \]
and \(\sqrt{n}\)-convergence of the entropy functional in the misspecified case.


62E20 Asymptotic distribution theory in statistics
62G20 Asymptotic properties of nonparametric inference
62G07 Density estimation
Full Text: DOI arXiv Euclid


[1] Anevski, D. and Hössjer, O. (2002). Monotone regression and density function estimation at a point of discontinuity. J. Nonparametr. Stat. 14 279-294. · Zbl 1013.62041
[2] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. · Zbl 1160.62008
[3] Balabdaoui, F., Jankowski, H., Pavlides, M., Seregin, A. and Wellner, J. (2011). On the Grenander estimator at zero. Statist. Sinica 21 873-899. · Zbl 1214.62037
[4] Balabdaoui, F., Jankowski, H., Rufibach, K. and Pavlides, M. (2013). Asymptotics of the discrete log-concave maximum likelihood estimator and related applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 75 769-790.
[5] Beirlant, J., Dudewicz, E. J., Györfi, L. and van der Meulen, E. C. (1997). Nonparametric entropy estimation: An overview. Int. J. Math. Stat. Sci. 6 17-39. · Zbl 0882.62003
[6] Birgé, L. (1987). On the risk of histograms for estimating decreasing densities. Ann. Statist. 15 1013-1022. · Zbl 0646.62033
[7] Carolan, C. and Dykstra, R. (1999). Asymptotic behavior of the Grenander estimator at density flat regions. Canad. J. Statist. 27 557-566. · Zbl 0949.62035
[8] Carolan, C. and Dykstra, R. (2001). Marginal densities of the least concave majorant of Brownian motion. Ann. Statist. 29 1732-1750. · Zbl 1044.60072
[9] Cator, E. (2011). Adaptivity and optimality of the monotone least-squares estimator. Bernoulli 17 714-735. · Zbl 1345.62066
[10] Chen, Y. and Samworth, R. J. (2013). Smoothed log-concave maximum likelihood estimation with applications. Statist. Sinica 23 1373-1398. · Zbl 06202711
[11] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat. 4 254-270. · Zbl 1329.62183
[12] Cule, M., Samworth, R. and Stewart, M. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 545-607. · Zbl 1329.62183
[13] Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011). Approximation by log-concave distributions, with applications to regression. Ann. Statist. 39 702-730. · Zbl 1216.62023
[14] Dunford, N. and Schwartz, J. T. (1958). Linear Operators. I. General Theory. With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics 7 . Interscience, New York. · Zbl 0084.10402
[15] Durot, C., Kulikov, V. N. and Lopuhaä, H. P. (2012). The limit distribution of the \(L_\infty\)-error of Grenander-type estimators. Ann. Statist. 40 1578-1608. · Zbl 1257.62017
[16] Durot, C. and Lopuhaä, H. (2013). A Kiefer-Wolfowitz type of result in a general setting, with an application to smooth monotone estimation. Available at . · Zbl 1309.62065
[17] Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125-153 (1957). · Zbl 0077.33715
[18] Groeneboom, P. (1983). The concave majorant of Brownian motion. Ann. Probab. 11 1016-1027. · Zbl 0523.60079
[19] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer , Vol. II ( Berkeley , Calif. , 1983). 539-555. Wadsworth, Belmont, CA. · Zbl 1373.62144
[20] Groeneboom, P. (1986). Some current developments in density estimation. In Mathematics and Computer Science ( Amsterdam , 1983). CWI Monogr. 1 163-192. North-Holland, Amsterdam. · Zbl 0593.62030
[21] Groeneboom, P., Hooghiemstra, G. and Lopuhaä, H. P. (1999). Asymptotic normality of the \(L_1\) error of the Grenander estimator. Ann. Statist. 27 1316-1347. · Zbl 1105.62342
[22] Groeneboom, P. and Pyke, R. (1983). Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab. 11 328-345. · Zbl 0521.62016
[23] Huang, Y. and Zhang, C.-H. (1994). Estimating a monotone density from censored observations. Ann. Statist. 22 1256-1274. · Zbl 0821.62016
[24] Jankowski, H. (2014). Supplement to “Convergence of linear functionals of the Grenander estimator under misspecification.” . · Zbl 1302.62045
[25] Jankowski, H. K. and Wellner, J. A. (2009). Estimation of a discrete monotone distribution. Electron. J. Stat. 3 1567-1605. · Zbl 1326.62038
[26] Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrsch. Verw. Gebiete 34 73-85. · Zbl 0354.62035
[27] Kulikov, V. N. and Lopuhaä, H. P. (2008). Distribution of global measures of deviation between the empirical distribution function and its concave majorant. J. Theoret. Probab. 21 356-377. · Zbl 1149.62039
[28] Le Cam, L. (1960). Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses. Univ. California Publ. Statist. 3 37-98. · Zbl 0104.12701
[29] Marshall, A. W. (1970). Discussion on Barlow and van Zwet’s paper. In Nonparametric Techniques in Statistical Inference ( Proc. Sympos. , Indiana Univ. , Bloomington , Ind. , 1969) 174-176. Cambridge Univ. Press, London.
[30] Patilea, V. (1997). Convex models, NPMLE and misspecification. Ph.D. thesis, Univ. Catholique de Louvain.
[31] Patilea, V. (2001). Convex models, MLE and misspecification. Ann. Statist. 29 94-123. · Zbl 1029.62020
[32] Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A 31 23-36. · Zbl 0181.45901
[33] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . Wiley, New York. · Zbl 1170.62365
[34] Simon, J. (1987). Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. (4) 146 65-96. · Zbl 0629.46031
[35] van de Geer, S. A. (2000). Applications of Empirical Process Theory. Cambridge Series in Statistical and Probabilistic Mathematics 6 . Cambridge Univ. Press, Cambridge. · Zbl 0953.62049
[36] van de Geer, S. (2003). Asymptotic theory for maximum likelihood in nonparametric mixture models. Comput. Statist. Data Anal. 41 453-464. · Zbl 1429.62117
[37] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics . Springer, New York. · Zbl 0862.60002
[38] Wasserman, L. (2006). All of Nonparametric Statistics. Springer Texts in Statistics . Springer, New York. · Zbl 1099.62029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.