## Convergence of linear functionals of the Grenander estimator under misspecification.(English)Zbl 1302.62045

Convergence rates of Grenander estimation of the true misspecified density are treated.
Let $${\mathcal F}$$ be the class of decreasing densities on $$\mathbb{R}_+$$. Let $$X_1,\dots,X_n$$ be an i.i.d. sequence of random variables with density $$f_0\in{\mathcal F}$$. Define the KL projection of $$f_0$$ as $\widehat f_0=\text{argmin}_{g\in{\mathcal F}}\int^\infty_0 f_0(x)\log{f_0(x)\over g(x)}\,dx$ and the Grenander estimation of $$f_0$$ as $\widehat f_n= \text{argmin}_{g\in{\mathcal F}} \int^\infty_0 \log g(x)\,dF_n(x),$ where $$F_n$$ is the empirical distribution function.
Let $$F_0(x)= \int^x_0 f_0(u)\,du$$ and $$\widehat F_0$$ be the least concave majorant of $$F_0$$. Put $${\mathcal M}= \{x\geq 0: \widehat F_0(x)> F(x)\}$$ and $${\mathcal W}=\{x\geq 0:\widehat F_0(x)= F(x)\}$$. Let $$[a, b]$$ be the largest interval containing $$x_0$$ such that $$\widehat F_0(x)$$ is linear on the interval. Let $$\text{gren}_{[a,b]}(g)$$ be the (left) derivative of the least concave majorant $$g$$ restricted to $$[a, b]$$. Further, let $$U$$ denote a standard Brownian bridge process on $$[0, 1]$$, $$U_{F_0}(x)= U(F_0(x))$$ and $$U^{\text{mod}}_{F_0}(u) = U_{F_0}(u)$$ if $$u\in [a,b]\cap{\mathcal W}$$, $$U^{\text{mod}}_{F_0}(u) = -\infty$$ if $$u\in[a, b]\cap{\mathcal M}$$.
The author proves that as $$n\to\infty$$ $\sqrt{n}(\widehat f_n(x_0)-\widehat f_0(x_0))\to \text{gren}_{[a,b]}(U^{\text{mod}}_{F_0}(x_0))$ and, in addition, if $$[a, b]\cap{\mathcal W}= \{a, b\}$$, $\sqrt{n}(\widehat f_n(x_0)-\widehat f_0(x_0))\to \sigma Z,$ where $$Z$$ is a standard normal random variable and $$\sigma$$ is some constant defined by $$\widehat f_0(x_0)$$.
The author also shows $$\sqrt{n}$$-convergence of linear functionals of the type
$\hat \mu_n(g) = \int_0^\infty g(x) \hat f_n(x) dx$
and $$\sqrt{n}$$-convergence of the entropy functional in the misspecified case.

### MSC:

 62E20 Asymptotic distribution theory in statistics 62G20 Asymptotic properties of nonparametric inference 62G07 Density estimation

### Software:

 [1] Anevski, D. and Hössjer, O. (2002). Monotone regression and density function estimation at a point of discontinuity. J. Nonparametr. Stat. 14 279-294. · Zbl 1013.62041 [2] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. · Zbl 1160.62008 [3] Balabdaoui, F., Jankowski, H., Pavlides, M., Seregin, A. and Wellner, J. (2011). On the Grenander estimator at zero. Statist. Sinica 21 873-899. · Zbl 1214.62037 [4] Balabdaoui, F., Jankowski, H., Rufibach, K. and Pavlides, M. (2013). Asymptotics of the discrete log-concave maximum likelihood estimator and related applications. J. R. Stat. Soc. Ser. B Stat. Methodol. 75 769-790. [5] Beirlant, J., Dudewicz, E. J., Györfi, L. and van der Meulen, E. C. (1997). Nonparametric entropy estimation: An overview. Int. J. Math. Stat. Sci. 6 17-39. · Zbl 0882.62003 [6] Birgé, L. (1987). On the risk of histograms for estimating decreasing densities. Ann. Statist. 15 1013-1022. · Zbl 0646.62033 [7] Carolan, C. and Dykstra, R. (1999). Asymptotic behavior of the Grenander estimator at density flat regions. Canad. J. Statist. 27 557-566. · Zbl 0949.62035 [8] Carolan, C. and Dykstra, R. (2001). Marginal densities of the least concave majorant of Brownian motion. Ann. Statist. 29 1732-1750. · Zbl 1044.60072 [9] Cator, E. (2011). Adaptivity and optimality of the monotone least-squares estimator. Bernoulli 17 714-735. · Zbl 1345.62066 [10] Chen, Y. and Samworth, R. J. (2013). Smoothed log-concave maximum likelihood estimation with applications. Statist. Sinica 23 1373-1398. · Zbl 06202711 [11] Cule, M. and Samworth, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat. 4 254-270. · Zbl 1329.62183 [12] Cule, M., Samworth, R. and Stewart, M. (2010). Maximum likelihood estimation of a multi-dimensional log-concave density. J. R. Stat. Soc. Ser. B Stat. Methodol. 72 545-607. · Zbl 1329.62183 [13] Dümbgen, L., Samworth, R. and Schuhmacher, D. (2011). Approximation by log-concave distributions, with applications to regression. Ann. Statist. 39 702-730. · Zbl 1216.62023 [14] Dunford, N. and Schwartz, J. T. (1958). Linear Operators. I. General Theory. With the Assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics 7 . Interscience, New York. · Zbl 0084.10402 [15] Durot, C., Kulikov, V. N. and Lopuhaä, H. P. (2012). The limit distribution of the $$L_\infty$$-error of Grenander-type estimators. Ann. Statist. 40 1578-1608. · Zbl 1257.62017 [16] Durot, C. and Lopuhaä, H. (2013). A Kiefer-Wolfowitz type of result in a general setting, with an application to smooth monotone estimation. Available at . · Zbl 1309.62065 [17] Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125-153 (1957). · Zbl 0077.33715 [18] Groeneboom, P. (1983). The concave majorant of Brownian motion. Ann. Probab. 11 1016-1027. · Zbl 0523.60079 [19] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer , Vol. II ( Berkeley , Calif. , 1983). 539-555. Wadsworth, Belmont, CA. · Zbl 1373.62144 [20] Groeneboom, P. (1986). Some current developments in density estimation. In Mathematics and Computer Science ( Amsterdam , 1983). CWI Monogr. 1 163-192. North-Holland, Amsterdam. · Zbl 0593.62030 [21] Groeneboom, P., Hooghiemstra, G. and Lopuhaä, H. P. (1999). Asymptotic normality of the $$L_1$$ error of the Grenander estimator. Ann. Statist. 27 1316-1347. · Zbl 1105.62342 [22] Groeneboom, P. and Pyke, R. (1983). Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab. 11 328-345. · Zbl 0521.62016 [23] Huang, Y. and Zhang, C.-H. (1994). Estimating a monotone density from censored observations. Ann. Statist. 22 1256-1274. · Zbl 0821.62016 [24] Jankowski, H. (2014). Supplement to “Convergence of linear functionals of the Grenander estimator under misspecification.” . · Zbl 1302.62045 [25] Jankowski, H. K. and Wellner, J. A. (2009). Estimation of a discrete monotone distribution. Electron. J. Stat. 3 1567-1605. · Zbl 1326.62038 [26] Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrsch. Verw. Gebiete 34 73-85. · Zbl 0354.62035 [27] Kulikov, V. N. and Lopuhaä, H. P. (2008). Distribution of global measures of deviation between the empirical distribution function and its concave majorant. J. Theoret. Probab. 21 356-377. · Zbl 1149.62039 [28] Le Cam, L. (1960). Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses. Univ. California Publ. Statist. 3 37-98. · Zbl 0104.12701 [29] Marshall, A. W. (1970). Discussion on Barlow and van Zwet’s paper. In Nonparametric Techniques in Statistical Inference ( Proc. Sympos. , Indiana Univ. , Bloomington , Ind. , 1969) 174-176. Cambridge Univ. Press, London. [30] Patilea, V. (1997). Convex models, NPMLE and misspecification. Ph.D. thesis, Univ. Catholique de Louvain. [31] Patilea, V. (2001). Convex models, MLE and misspecification. Ann. Statist. 29 94-123. · Zbl 1029.62020 [32] Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A 31 23-36. · Zbl 0181.45901 [33] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . Wiley, New York. · Zbl 1170.62365 [34] Simon, J. (1987). Compact sets in the space $$L^p(0,T;B)$$. Ann. Mat. Pura Appl. (4) 146 65-96. · Zbl 0629.46031 [35] van de Geer, S. A. (2000). Applications of Empirical Process Theory. Cambridge Series in Statistical and Probabilistic Mathematics 6 . Cambridge Univ. Press, Cambridge. · Zbl 0953.62049 [36] van de Geer, S. (2003). Asymptotic theory for maximum likelihood in nonparametric mixture models. Comput. Statist. Data Anal. 41 453-464. · Zbl 1429.62117 [37] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics . Springer, New York. · Zbl 0862.60002 [38] Wasserman, L. (2006). All of Nonparametric Statistics. Springer Texts in Statistics . Springer, New York. · Zbl 1099.62029