×

Stochastic dynamics of an SIRS epidemic model with ratio-dependent incidence rate. (English) Zbl 1302.92123

Summary: We investigate the complex dynamics of an epidemic model with nonlinear incidence rate of saturated mass action which depends on the ratio of the number of infectious individuals to that of susceptible individuals. We first deal with the boundedness, dissipation, persistence, and the stability of the disease-free and endemic points of the deterministic model. And then we prove the existence and uniqueness of the global positive solutions, stochastic boundedness, and permanence for the stochastic epidemic model. Furthermore, we perform some numerical examples to validate the analytical findings. Needless to say, both deterministic and stochastic epidemic models have their important roles.

MSC:

92D30 Epidemiology
34F05 Ordinary differential equations and systems with randomness
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics—I, Bulletin of Mathematical Biology, 53, 1-2, 33-55 (1991) · Zbl 0005.30501
[2] Ma, Z.; Zhou, Y.; Wu, J., Modeling and Dynamics of Infectious Diseases (2009), Beijing, China: Higher Education Press, Beijing, China · Zbl 1180.92081
[3] Bain, C., Applied mathematical ecology, Journal of Epidemiology and Community Health, 44, 3, 254 (1990)
[4] Korobeinikov, A.; Maini, P. K., Non-linear incidence and stability of infectious disease models, Mathematical Medicine and Biology, 22, 2, 113-128 (2005) · Zbl 1076.92048
[5] Ma, J.; Ma, Z., Epidemic threshold conditions for seasonally forced SEIR models, Mathematical Biosciences and Engineering, 3, 1, 161-172 (2006) · Zbl 1089.92048
[6] Capasso, V.; Serio, G., A generalization of the Kermack-McKendrick deterministic epidemic model, Mathematical Biosciences, 42, 1-2, 43-61 (1978) · Zbl 0398.92026
[7] Capasso, V., Mathematical Structures of Epidemic Systems, 97, xvi+283 (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1141.92035
[8] Liu, W. M.; Levin, S. A.; Iwasa, Y., Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 23, 2, 187-204 (1986) · Zbl 0582.92023
[9] Liu, W. M.; Hethcote, H. W.; Levin, S. A., Dynamical behavior of epidemiological models with nonlinear incidence rates, Journal of Mathematical Biology, 25, 4, 359-380 (1987) · Zbl 0621.92014
[10] Jacquez, J. A.; O’Neill, P., Reproduction numbers and thresholds in stochastic epidemic models I. Homogeneous populations, Mathematical Biosciences, 107, 2, 161-186 (1991) · Zbl 0739.92016
[11] Derrick, W. R.; van den Driessche, P., A disease transmission model in a nonconstant population, Journal of Mathematical Biology, 31, 5, 495-512 (1993) · Zbl 0772.92015
[12] Hethcote, H. W., The mathematics of infectious diseases, SIAM Review, 42, 4, 599-653 (2000) · Zbl 0993.92033
[13] Hethcote, H. W.; Levin, S. A., Periodicity in epidemiological models, Applied Mathematical Ecology, 18, 193-211 (1989)
[14] Alexander, M. E.; Moghadas, S. M., Periodicity in an epidemic model with a generalized non-linear incidence, Mathematical Biosciences, 189, 1, 75-96 (2004) · Zbl 1073.92040
[15] Ruan, S.; Wang, W., Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations, 188, 1, 135-163 (2003) · Zbl 1028.34046
[16] Xiao, D.; Ruan, S., Global analysis of an epidemic model with nonmonotone incidence rate, Mathematical Biosciences, 208, 2, 419-429 (2007) · Zbl 1119.92042
[17] Li, X.-Z.; Li, W.-S.; Ghosh, M., Stability and bifurcation of an SIR epidemic model with nonlinear incidence and treatment, Applied Mathematics and Computation, 210, 1, 141-150 (2009) · Zbl 1159.92036
[18] Yuan, S.; Li, B., Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate, Discrete Dynamics in Nature and Society, 2009 (2009) · Zbl 1177.37089
[19] Li, B.; Yuan, S.; Zhang, W., Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate, International Journal of Biomathematics, 4, 2, 227-239 (2011) · Zbl 1297.92078
[20] Beddington, J. R.; May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science, 197, 4302, 463-465 (1977)
[21] Allen, L. J. S.; Brauer, F.; van den Driessche, P.; Wu, J., An introduction to stochastic epidemic models, Mathematical Epidemiology, 1945, 81-130 (2008), Berlin, Germany: Springer, Berlin, Germany · Zbl 1206.92022
[22] Gard, T. C., Introduction to Stochastic Differential Equations, 114, xiv+234 (1988), New York, NY, USA: Marcel Dekker, New York, NY, USA
[23] Øksendal, B., Stochastic Differential Equations, xvi+271 (1995), Berlin, Germany: Springer, Berlin, Germany · Zbl 0841.60037
[24] Mao, X., Stochastic Differential Equations and Their Applications, xii+366 (1997), Chichester, UK: Horwood Publishing Limited,, Chichester, UK
[25] Khasminskii, R. Z.; Klebaner, F. C., Long term behavior of solutions of the Lotka-Volterra system under small random perturbations, The Annals of Applied Probability, 11, 3, 952-963 (2001) · Zbl 1061.34513
[26] Mao, X.; Marion, G.; Renshaw, E., Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes and their Applications, 97, 1, 95-110 (2002) · Zbl 1058.60046
[27] Bandyopadhyay, M.; Chattopadhyay, J., Ratio-dependent predator-prey model: effect of environmental fluctuation and stability, Nonlinearity, 18, 2, 913-936 (2005) · Zbl 1078.34035
[28] Jiang, D.; Shi, N., A note on nonautonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, 303, 1, 164-172 (2005) · Zbl 1076.34062
[29] Luo, Q.; Mao, X., Stochastic population dynamics under regime switching, Journal of Mathematical Analysis and Applications, 334, 1, 69-84 (2007) · Zbl 1113.92052
[30] Chatterjee, S.; Isaia, M.; Bona, F.; Badino, G.; Venturino, E., Modelling environmental influences on wanderer spiders in the Langhe region (Piemonte-NW Italy), Journal of Numerical Analysis, Industrial and Applied Mathematics, 3, 3-4, 193-209 (2008) · Zbl 1166.92037
[31] Li, X.; Mao, X., Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete and Continuous Dynamical Systems Series A, 24, 2, 523-545 (2009) · Zbl 1161.92048
[32] Liu, M.; Wang, K., Survival analysis of stochastic single-species population models in polluted environments, Ecological Modelling, 220, 9-10, 1347-1357 (2009)
[33] Lv, J.; Wang, K., Asymptotic properties of a stochastic predator-prey system with Holling II functional response, Communications in Nonlinear Science and Numerical Simulation, 16, 10, 4037-4048 (2011) · Zbl 1218.92072
[34] Wang, X.; Huang, H.; Cai, Y.; Wang, W., The complex dynamics of a stochastic predator-prey model, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.93142
[35] Beretta, E.; Kolmanovskii, V.; Shaikhet, L., Stability of epidemic model with time delays influenced by stochastic perturbations, Mathematics and Computers in Simulation, 45, 3-4, 269-277 (1998) · Zbl 1017.92504
[36] Carletti, M., On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Mathematical Biosciences, 175, 2, 117-131 (2002) · Zbl 0987.92027
[37] Nåsell, I., Stochastic models of some endemic infections, Mathematical Biosciences, 179, 1, 1-19 (2002) · Zbl 0991.92026
[38] Tornatore, E.; Buccellato, S. M.; Vetro, P., Stability of a stochastic SIR system, Physica A, 354, 1-4, 111-126 (2005)
[39] Dalal, N.; Greenhalgh, D.; Mao, X., A stochastic model of AIDS and condom use, Journal of Mathematical Analysis and Applications, 325, 1, 36-53 (2007) · Zbl 1101.92037
[40] Dalal, N.; Greenhalgh, D.; Mao, X., A stochastic model for internal HIV dynamics, Journal of Mathematical Analysis and Applications, 341, 2, 1084-1101 (2008) · Zbl 1132.92015
[41] Yu, J.; Jiang, D.; Shi, N., Global stability of two-group SIR model with random perturbation, Journal of Mathematical Analysis and Applications, 360, 1, 235-244 (2009) · Zbl 1184.34064
[42] Britton, T., Stochastic epidemic models: a survey, Mathematical Biosciences, 225, 1, 24-35 (2010) · Zbl 1188.92031
[43] Ball, F.; Sirl, D.; Trapman, P., Analysis of a stochastic SIR epidemic on a random network incorporating household structure, Mathematical Biosciences, 224, 2, 53-73 (2010) · Zbl 1192.92037
[44] Jiang, D.; Ji, C.; Shi, N.; Yu, J., The long time behavior of DI SIR epidemic model with stochastic perturbation, Journal of Mathematical Analysis and Applications, 372, 1, 162-180 (2010) · Zbl 1194.92053
[45] Jiang, D.; Yu, J.; Ji, C.; Shi, N., Asymptotic behavior of global positive solution to a stochastic SIR model, Mathematical and Computer Modelling, 54, 1-2, 221-232 (2011) · Zbl 1225.60114
[46] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM Journal on Applied Mathematics, 71, 3, 876-902 (2011) · Zbl 1263.34068
[47] Liu, Z., Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Analysis. Real World Applications, 14, 3, 1286-1299 (2013) · Zbl 1261.34040
[48] Imhof, L.; Walcher, S., Exclusion and persistence in deterministic and stochastic chemostat models, Journal of Differential Equations, 217, 1, 26-53 (2005) · Zbl 1089.34041
[49] Higham, D. J., An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43, 3, 525-546 (2001) · Zbl 0979.65007
[50] Afanasiev, V. N.; Kolmanovskii, V. B.; Nosov, V. R., Mathematical Theory of Control Systems Design, 341, xxiv+668 (1996), Dordrecht, The Netherlands: Kluwer Academic Publishers Group, Dordrecht, The Netherlands
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.