Cai, H.; Huang, J. Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology. (English) Zbl 1302.93005 Int. J. Gen. Syst. 43, No. 3-4, 294-304 (2014). Summary: In recent years, the leader-following consensus problem for multiple uncertain Euler-Lagrange systems has been studied under some restrictive assumptions on the network topology. In this paper, we further study the same problem under switching network topology. We propose a distributed adaptive control law that can solve the problem under a switching network satisfying jointly connected condition. Under this condition, our results do not require the network to be undirected and allow the network to be disconnected at any time instant. Moreover, by introducing an exosystem to generate various reference signals, our control law can handle a class of reference signals such as sinusoidal signals with arbitrary amplitudes and initial phases or ramp signals with arbitrary slopes. Cited in 24 Documents MSC: 93A14 Decentralized systems 93C15 Control/observation systems governed by ordinary differential equations Keywords:leader-following consensus; multi-agent systems; Euler-Lagrange systems; switching network topology × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1109/TSMCB.2010.2095497 · doi:10.1109/TSMCB.2010.2095497 [2] Chopra N., Advances in Robot Control: From Everyday Physics to Human-Like Movements pp 107– (2010) [3] DOI: 10.1109/TRO.2009.2014125 · doi:10.1109/TRO.2009.2014125 [4] DOI: 10.1007/978-1-4613-0163-9 · doi:10.1007/978-1-4613-0163-9 [5] DOI: 10.1016/j.automatica.2007.07.004 · Zbl 1283.93019 · doi:10.1016/j.automatica.2007.07.004 [6] DOI: 10.1109/TAC.2003.812781 · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781 [7] Lewis F. L., Control of Robot Manipulators, 1. ed. (1993) [8] DOI: 10.1109/TAC.2011.2109437 · Zbl 1368.93432 · doi:10.1109/TAC.2011.2109437 [9] DOI: 10.1049/iet-cta.2009.0607 · doi:10.1049/iet-cta.2009.0607 [10] DOI: 10.1016/j.sysconle.2010.01.006 · Zbl 1223.93006 · doi:10.1016/j.sysconle.2010.01.006 [11] DOI: 10.1109/TAC.2010.2103415 · Zbl 1368.93308 · doi:10.1109/TAC.2010.2103415 [12] Qu Z., Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles (2009) · Zbl 1171.93005 [13] DOI: 10.1007/978-1-84800-015-5 · doi:10.1007/978-1-84800-015-5 [14] DOI: 10.1080/00207170902948027 · Zbl 1175.93074 · doi:10.1080/00207170902948027 [15] Slotine J. E., Applied Nonlinear Control (1991) · Zbl 0753.93036 [16] DOI: 10.1109/TAC.2011.2176391 · Zbl 1369.93387 · doi:10.1109/TAC.2011.2176391 [17] DOI: 10.1109/TSMCB.2011.2179981 · doi:10.1109/TSMCB.2011.2179981 [18] DOI: 10.1109/TCST.2006.883201 · doi:10.1109/TCST.2006.883201 [19] DOI: 10.1109/TAC.2009.2029296 · Zbl 1367.93542 · doi:10.1109/TAC.2009.2029296 [20] DOI: 10.1016/j.sysconle.2013.06.004 · Zbl 1281.93010 · doi:10.1016/j.sysconle.2013.06.004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.