×

Most odd degree hyperelliptic curves have only one rational point. (English) Zbl 1303.11073

In the present article, the authors consider hyperelliptic curves of odd degree of the form \(y^{2}=f(x)\), where \(f(x)\) is a monic irreducible polynomial, of degree \(2g+1\) and \(g \geq 3\), with integer coefficients and without multiple zeros in \({\mathbb C}\). All of these curves, after completing with the point at infinity, have the point \(\infty\) as a rational point. In some cases the curve may or not have more rational points. The main result is that there a lot of such curves with a unique rational point (this being \(\infty\)) and the fraction of curves with that property converges to \(1\) as \(g\) goes to \(\infty\). The main arguments uses \(p\)-adic analysis.

MSC:

11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
14G25 Global ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] G. Faltings, ”Endlichkeitssätze für abelsche Varietäten über Zahlkörpern,” Invent. Math., vol. 73, iss. 3, pp. 349-366, 1983. · Zbl 0588.14026
[2] C. Chabauty, ”Sur les points rationnels des courbes algébriques de genre supérieur à l’unité,” C. R. Acad. Sci. Paris, vol. 212, pp. 882-885, 1941. · Zbl 0025.24902
[3] R. F. Coleman, ”Effective Chabauty,” Duke Math. J., vol. 52, iss. 3, pp. 765-770, 1985. · Zbl 0588.14015
[4] M. Bhargava and B. Gross, The average size of the \(2\)-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point, 2013. · Zbl 1303.11072
[5] M. Reid, The complete intersection of two or more quadrics, 1972.
[6] R. Donagi, ”Group law on the intersection of two quadrics,” Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 7, iss. 2, pp. 217-239, 1980. · Zbl 0457.14023
[7] X. Wang, Pencils of quadrics and Jacobians of hyperelliptic curves, 2013.
[8] M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, 2015. · Zbl 1307.11071
[9] A. J. de Jong, ”Counting elliptic surfaces over finite fields,” Mosc. Math. J., vol. 2, iss. 2, pp. 281-311, 2002. · Zbl 1031.11033
[10] É. Fouvry, ”Sur le comportement en moyenne du rang des courbes \(y^2=x^3+k\),” in Séminaire de Théorie des Nombres, Paris, 1990-91, Boston: Birkhäuser, 1993, vol. 108, pp. 61-84.
[11] B. Poonen, ”Average rank of elliptic curves [after Manjul Bhargava and Arul Shankar],” in Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043-1058, Paris: Soc. Math. France, 2013, vol. 352, p. exp. no. 1049, viii, 187-204.
[12] W. McCallum and B. Poonen, ”The method of Chabauty and Coleman,” in Explicit Methods in Number Theory, Paris: Soc. Math. France, 2012, vol. 36, pp. 99-117. · Zbl 1377.11077
[13] M. Stoll, ”Independence of rational points on twists of a given curve,” Compos. Math., vol. 142, iss. 5, pp. 1201-1214, 2006. · Zbl 1128.11033
[14] . T. Skolem, ”Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen,” in 8. Skand. Mat.-Kongr., Stockholm, , 1934, pp. 163-188. · Zbl 0011.39201
[15] W. G. McCallum, ”On the method of Coleman and Chabauty,” Math. Ann., vol. 299, iss. 3, pp. 565-596, 1994. · Zbl 0824.14017
[16] D. Lorenzini and T. J. Tucker, ”Thue equations and the method of Chabauty-Coleman,” Invent. Math., vol. 148, iss. 1, pp. 47-77, 2002. · Zbl 1048.11023
[17] E. Katz and D. Zureick-Brown, ”The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions,” Compos. Math., vol. 149, iss. 11, pp. 1818-1838, 2013. · Zbl 1297.14026
[18] T. Saito, ”Conductor, discriminant, and the Noether formula of arithmetic surfaces,” Duke Math. J., vol. 57, iss. 1, pp. 151-173, 1988. · Zbl 0657.14017
[19] Q. Liu, ”Conducteur et discriminant minimal de courbes de genre \(2\),” Compositio Math., vol. 94, iss. 1, pp. 51-79, 1994. · Zbl 0837.14023
[20] Q. Liu, ”Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète,” Trans. Amer. Math. Soc., vol. 348, iss. 11, pp. 4577-4610, 1996. · Zbl 0926.11043
[21] M. Bhargava, Most hyperelliptic curves over \(\mathbbQ\) have no rational points, 2013.
[22] A. Shankar and X. Wang, Average size of the 2-Selmer group of Jacobians of monic even hyperelliptic curves, 2014.
[23] S. Lichtenbaum, ”Curves over discrete valuation rings,” Amer. J. Math., vol. 90, pp. 380-405, 1968. · Zbl 0194.22101
[24] N. Koblitz, \(p\)-adic Numbers, \(p\)-adic Analysis, and Zeta-Functions, Second ed., New York: Springer-Verlag, 1984, vol. 58. · Zbl 0364.12015
[25] A. Chiodo, D. Eisenbud, G. Farkas, and F. Schreyer, ”Syzygies of torsion bundles and the geometry of the level \(\ell\) modular variety over \(\overline{\mathcalM}_g\),” Invent. Math., vol. 194, iss. 1, pp. 73-118, 2013. · Zbl 1284.14006
[26] N. A’Campo, ”Tresses, monodromie et le groupe symplectique,” Comment. Math. Helv., vol. 54, iss. 2, pp. 318-327, 1979. · Zbl 0441.32004
[27] M. Kneser, ”Starke Approximation in algebraischen Gruppen. I,” J. Reine Angew. Math., vol. 218, pp. 190-203, 1965. · Zbl 0143.04701
[28] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models, New York: Springer-Verlag, 1990, vol. 21. · Zbl 0705.14001
[29] B. Poonen and E. Rains, ”Random maximal isotropic subspaces and Selmer groups,” J. Amer. Math. Soc., vol. 25, iss. 1, pp. 245-269, 2012. · Zbl 1294.11097
[30] B. Poonen and J. F. Voloch, ”Random Diophantine equations,” in Arithmetic of Higher-Dimensional Algebraic Varieties, Boston: Birkhäuser, 2004, vol. 226, pp. 175-184. · Zbl 1208.11050
[31] B. Poonen, ”Heuristics for the Brauer-Manin obstruction for curves,” Experiment. Math., vol. 15, iss. 4, pp. 415-420, 2006. · Zbl 1173.11040
[32] A. Granville, ”Rational and integral points on quadratic twists of a given hyperelliptic curve,” Int. Math. Res. Not., vol. 2007, iss. 8, p. I, 2007. · Zbl 1129.11028
[33] M. Stoll, On the average number of rational points on curves of genus \(2\), 2009.
[34] B. Poonen, ”Computing torsion points on curves,” Experiment. Math., vol. 10, iss. 3, pp. 449-465, 2001. · Zbl 1063.11017
[35] M. Stoll, ”Implementing 2-descent for Jacobians of hyperelliptic curves,” Acta Arith., vol. 98, iss. 3, pp. 245-277, 2001. · Zbl 0972.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.