×

Complete linear Weingarten hypersurfaces immersed in the hyperbolic space. (English) Zbl 1303.53080

A hypersurface is called linear Weingarten if an equation of type \(R= aH+ b\) is satisfied for some constants \(a\), \(b\) where \(R\) denotes the scalar curvature and \(H\) is the mean curvature. The main result of this article is the following.
Theorem 1.1: A complete linear Weingarten hypersurfaces of the hyperbolic \((n+1)\)-space is either totally umbilical or isometric to a hyperbolic cylinder over a sphere of dimension \(1\) or \(n-1\) if a certain inequality is satisfied. This inequality assumes that the norm of the second fundamental form is not greater than a certain expression involving only the mean curvature \(H\) and the dimension \(n\). Moreover it is assumed that \(H\) attains its maximum on the manifold.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C20 Global Riemannian geometry, including pinching
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] N. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J., 35 (1987), 123-136. · Zbl 0645.53010
[2] H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc., 120 (1994), 1223-1229. · Zbl 0802.53017
[3] É. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl., 17 (1938), 177-191. · Zbl 0020.06505
[4] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204. · Zbl 0349.53041
[5] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665-672. · Zbl 0864.53040
[6] H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat., 35 (1997), 327-351. · Zbl 0920.53028
[7] H. Li, Y. J. Suh and G. Wei, Linear Weingarten hypersurfaces in a unit sphere, Bull. Korean Math. Soc., 46 (2009), 321-329. · Zbl 1165.53361
[8] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math., 96 (1974), 207-213. · Zbl 0302.53028
[9] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214. · Zbl 0154.21501
[10] P. J. Ryan, Hypersurfaces with parallel Ricci tensor, Osaka J. Math., 8 (1971), 251-259. · Zbl 0222.53025
[11] S. Shu, Complete hypersurfaces with constant scalar curvature in a hyperbolic space, Balkan J. Geom. Appl., 12 (2007), 107-115. · Zbl 1135.53039
[12] S. Shu, Linear Weingarten hypersurfaces in a real space form, Glasg. Math. J., 52 (2010), 635-648. · Zbl 1203.53059
[13] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math., 28 (1975), 201-228. · Zbl 0291.31002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.