Atai, Farrokh; Hallnäs, Martin; Langmann, Edwin Source identities and kernel functions for deformed (quantum) Ruijsenaars models. (English) Zbl 1303.81071 Lett. Math. Phys. 104, No. 7, 811-835 (2014). In this paper the authors derive explicit source identities and kernel functions for a relativistic generalization of models of quantum Calogero-Sutherland systems due to Ruijsenaars. (A function \(F(x,y)\) is called a kernel function of a pair of Hamiltonian operators \(H(x)\) and \({\tilde H}(y)\) if \((H(x)-{\tilde H}(y)-c)F(x,y) =0\) for some constant \(c\). Such identities have been used to find eigenfunctions of the operators \(H,{\tilde H}\).) The generalization here is in terms of a deformation of analytic difference operators of the form \[ \left({\mathcal S}^\pm_{\mathcal N}({\mathbf X}:{\mathbf m})-s(ig\beta \sum_{J=1}^{\mathcal N} m_J)/ig\beta s'(0)\right)\Phi({\mathbf X}:{\mathbf m})=0 \] where \(\Phi({\mathbf X}:{\mathbf m})=\prod_{1\leq J<K\leq {\mathcal N}}\;\phi(X_J-X_K: m_J,m_k) \) as in the Ruijsenaars model, but here \(f_\pm(x:m,m')\) equals either \((\frac{s(x\pm ig\beta(m+m')/2)}{s(x\pm ig\beta(m-m')/2)})^\frac12\) or \(1\), depending on the values of parameters \(m,m'\). The function \(s(x)\) is chosen as usual for the rational, trigonometric, hyperbolic and elliptic cases. The Ruijsenaars model is the special case \(m=m'=1\). The authors find a source identity for these operators of the form \[ \left({\mathcal S}^\pm_{\mathcal N}({\mathbf X}:{\mathbf m})-s(ig\beta \sum_{J=1}^{\mathcal N} m_J)/ig\beta s'(0)\right)\Phi({\mathbf X}:{\mathbf m})=0 \] where \(\Phi({\mathbf X}:{\mathbf m})=\prod_{1\leq J<K\leq {\mathcal N}}\;\phi(X_J-X_K: m_J,m_k)\) is a common eigenfunction for both \(\pm\) cases and \(\phi(x:m,m')\) is either \(s(x)\) or expressible in terms of a function depending on \(s(x)\) for the various choices of the parameters. A key observation here is that if \((m_J,X_J)= (1,x_J)\) for \(J=1,\dots,N\) and \((m_J,X_J)= (-1,y_{J-N})\) for \(J-N=1,\dots,M\) then \({\mathcal S}^\pm_{ N+M}({\mathbf X}:{\mathbf m})={\mathcal S}^\pm_{ N}({\mathbf x}:g,\beta) -{\mathcal S}^\pm_{ M}({-\mathbf y}:g,\beta)\), so that the source identity leads immediately to explicit kernel function identities of the form \[ \left({\mathcal S}^\pm_{ N}({\mathbf x}:g,\beta) -{\mathcal S}^\pm_{ M}({-\mathbf y}:g,\beta) -s(ig\beta (N-M))/ig\beta s'(0)\right) F_{N,M}({\mathbf x},{\mathbf y}:g,\beta)=0. \] The complete details of the long and complicated proofs are provided; the exposition is clear. There is a discussion of future research directions. Reviewer: Willard Miller jun. (Minneapolis) Cited in 1 Document MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 16R60 Functional identities (associative rings and algebras) 14D15 Formal methods and deformations in algebraic geometry 81Q80 Special quantum systems, such as solvable systems 30C40 Kernel functions in one complex variable and applications Keywords:exactly solvable models; Ruijsenaars models; Chalykh-Feigin-Veselov-Sergeev type deformation; kernel functions PDF BibTeX XML Cite \textit{F. Atai} et al., Lett. Math. Phys. 104, No. 7, 811--835 (2014; Zbl 1303.81071) Full Text: DOI arXiv References: [1] Calogero, F., Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419-436, (1971) [2] Sutherland, B., Exact results for a quantum many body problem in one-dimension. II, Phys. Rev. A, 5, 1372-1376, (1972) · Zbl 0277.34049 [3] Olshanetsky, M.A.; Perelomov, A.M., Quantum completely integrable systems connected with semisimple Lie algebras, Lett. Math. Phys., 2, 7-13, (1977) · Zbl 0366.58005 [4] Langmann, E., Algorithms to solve the Sutherland model, J. Math. Phys., 42, 4148-4157, (2001) · Zbl 1012.81022 [5] Langmann, E.: Singular eigenfunctions of Calogero-Sutherland type systems and how to transform them into regular ones. SIGMA 3, 031 (2007) · Zbl 1133.81030 [6] Hallnäs, M.; Langmann, E., A unified construction of generalized classical polynomials associated with operators of Calogero-Sutherland type, Constr. Approx., 31, 309-342, (2010) · Zbl 1193.33028 [7] Langmann, E.: Explicit solution of the (quantum) elliptic Calogero-Sutherland model. Ann. Henri Poincaré 15, 755 (2014) · Zbl 1180.33024 [8] Hallnäs, M., Ruijsenaars, S.: A recursive construction of joint eigenfunctions for the hyperbolic nonrelativistic Calogero-Moser Hamiltonians. arXiv:1305.4759 [nlin.SI] [9] Langmann, E., Source identity and kernel functions for elliptic Calogero-Sutherland type systems, Lett. Math. Phys., 94, 63-75, (2010) · Zbl 1198.81093 [10] Langmann, E., Takemura, K.: Source identity and kernel functions for Inozemtsev-type systems. J. Math. Phys. 53, 082105 (2012) · Zbl 1278.81170 [11] Sen, D., A multispecies Calogero-Sutherland model, Nucl. Phys. B, 479, 554-574, (1996) · Zbl 0925.81446 [12] Chalykh, O.; Feigin, M.; Veselov, A., New integrable generalizations of Calogero-Moser quantum problem, J. Math. Phys., 39, 695-703, (1998) · Zbl 0906.34061 [13] Sergeev, A.N., Calogero operator and Lie superalgebras, Theor. Math. Phys., 131, 747-764, (2002) · Zbl 1039.81028 [14] Sergeev, A.N.; Veselov, A.P., Deformed quantum Calogero-Moser systems and Lie superalgebras, Commun. Math. Phys., 245, 249-278, (2004) · Zbl 1062.81097 [15] Ruijsenaars, S.M.M., Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys., 110, 191-213, (1987) · Zbl 0673.58024 [16] Ruijsenaars, S.N.M., Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero-Moser Hamiltonians, Theor. Math. Phys., 146, 25-33, (2006) · Zbl 1177.81063 [17] Hallnäs, M., Ruijsenaars, S.: Kernel functions and Bäcklund transformations for relativistic Calogero-Moser and Toda systems. J. Math. Phys. 53, 123512 (2012) · Zbl 1180.33024 [18] Komori, Y., Noumi, M., Shiraishi, J.: Kernel functions for difference operators of Ruijsenaars type and their applications. SIGMA 5, 054 (2009) · Zbl 1160.81393 [19] Sergeev, A.N.; Veselov, A.P., Deformed Macdonald-Ruijsenaars operators and super Macdonald polynomials, Commun. Math. Phys., 288, 653-675, (2009) · Zbl 1180.33024 [20] Razamat, S.S.: On the \({{\mathcal N}=2}\) superconformal index and eigenfunctions of the elliptic RS model. Lett. Math. Phys. (2014). doi:10.1007/s11005-014-0682-5 · Zbl 1291.81176 [21] Ruijsenaars, S.M.M., First order analytical difference equations and integrable quantum systems, J. Math. Phys., 38, 1069-1146, (1997) · Zbl 0877.39002 [22] Whittaker E.T., Watson G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927) · JFM 45.0433.02 [23] Langmann, E.: Remarkable identities related to the (quantum) elliptic Calogero-Sutherland model. J. Math. Phys. 47, 022101 (2006) · Zbl 1111.81161 [24] Diejen, J.F, Integrability of difference Calogero-Moser systems, J. Math. Phys., 35, 2983-3004, (1994) · Zbl 0805.58027 [25] Etingof, P.I.; Styrkas, K.L., Algebraic integrability of Macdonald operators and representations of quantum groups, Compos. Math., 114, 125-152, (1998) · Zbl 0918.17011 [26] Chalykh, O.A., Macdonald polynomials and algebraic integrability, Adv. Math., 166, 193-259, (2002) · Zbl 1004.33009 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.