Asymptotic behavior of the socle of Frobenius powers. (English) Zbl 1304.13008

Author’s abstract: Let \((R,\mathfrak{m})\) be a local ring of prime characteristic \(p\) and \(q\) a varying power of \(p\). We study the asymptotic behavior of the socle of \(R/I^{[q]}\) where \(I\) is an \(\mathfrak{m}\)-primary ideal of \(R\). In the graded case, we define the notion of diagonal \(F\)-threshold of \(R\) as the limit of the top socle degree of \(R/\mathfrak{m}^{[q]}\) over \(q\) when \(q\to\infty\). Diagonal \(F\)-threshold exists as a positive number (rational number in the latter case) when:
(1) \(R\) is either a complete intersection or \(R\) is \(F\)-pure on the punctured spectrum;
(2) \(R\) is a two dimensional normal domain.
In the latter case, we also discuss its geometric interpretation and apply it to determine the strong semistability of the syzygy bundle of \((x^{d},y^{d},z^{d})\) over the smooth projective curve in \(\mathbb{P}^{2}\) defined by \(x^{n}+y^{n}+z^{n}=0\). The rest of this paper concerns a different question about how the length of the socle of \(R/I^{[q]}\) vary as \(q\) varies. We give explicit calculations of the length of the socle of \(R/\mathfrak{m}^{[q]}\) for a class of hypersurface rings which attain the minimal Hilbert-Kunz function. We finally show, under mild conditions, the growth of such length function and the growth of the second Betti numbers of \(R/\mathfrak{m}^{[q]}\) differ by at most a constant, as \(q\to\infty\).


13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
13D02 Syzygies, resolutions, complexes and commutative rings
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
14H60 Vector bundles on curves and their moduli
Full Text: arXiv Euclid


[1] \beginbarticle \bauthor\binitsM. \bsnmBlickle, \bauthor\binitsM. and \bauthor\binitsK. E. \bsnmSmith, \batitleDiscreteness and rationality of diagonal \(F\)-thresholds, \bjtitleMichigan Math. J. \bvolume57 (\byear2008), page 43-\blpage61. \endbarticle \endbibitem · Zbl 1177.13013 · doi:10.1307/mmj/1220879396
[2] \beginbarticle \bauthor\binitsH. \bsnmBrenner, \batitleA linear bound for Frobenius powers and an inclusion bound for tight closure, \bjtitleMichigan Math. J. \bvolume53 (\byear2005), page 585-\blpage596. \endbarticle \endbibitem · Zbl 1113.13003 · doi:10.1307/mmj/1133894168
[3] \beginbchapter \bauthor\binitsH. \bsnmBrenner, \bctitleOn a problem of Miyaoka, \bbtitleNumber fields and function fields: Two parallel worlds (\beditor\binitsB. \bsnmMoonen, \beditor\binitsR. \bsnmSchoof and \beditor\binitsG. \bsnmvan derGeer, eds.), \bsertitleProgr. Math., vol. \bseriesno239, Boston, \blocationBoston, MA, \byear2005, pp. page 51-\blpage59. \endbchapter \endbibitem · Zbl 1098.14022 · doi:10.1007/0-8176-4447-4_3
[4] \beginbarticle \bauthor\binitsH. \bsnmBrenner, \batitleThere is no Bogomolov type restriction theorem for strong semistability in positive characteristic, \bjtitleProc. Amer. Math. Soc. \bvolume133 (\byear2005), page 1941-\blpage1947. \endbarticle \endbibitem · Zbl 1083.14050 · doi:10.1090/S0002-9939-05-07843-3
[5] \beginbarticle \bauthor\binitsH. \bsnmBrenner, \batitleThe rationality of the Hilbert-Kunz multiplicity in graded dimension two, \bjtitleMath. Ann. \bvolume334 (\byear2006), page 91-\blpage110. \endbarticle \endbibitem · Zbl 1098.13017 · doi:10.1007/s00208-005-0703-x
[6] \beginbchapter \bauthor\binitsH. \bsnmBrenner, \bctitleTight closure and vector bundles, \bbtitleThree lectures on commutative algebra, \bsertitleUniv. Lecture Ser., vol. \bseriesno42, \bpublisherAmer. Math. Soc., \blocationProvidence, RI, \byear2008. \endbchapter \endbibitem
[7] \beginbarticle \bauthor\binitsH. \bsnmBrenner and \bauthor\binitsA. \bsnmKaid, \batitleA note on the weak Lefschetz property of monomial complete intersections in positive characteristic, \bjtitleCollect. Math. \bvolume62 (\byear2011), page 85-\blpage93. \endbarticle \endbibitem · Zbl 1221.13019 · doi:10.1007/s13348-010-0006-8
[8] \beginbarticle \bauthor\binitsR.-O. \bsnmBuchweitz and \bauthor\binitsQ. \bsnmChen, \batitleHilbert-Kunz functions of cubic curves and surfaces, \bjtitleJ. Algebra \bvolume197 (\byear1997), page 246-\blpage267. \endbarticle \endbibitem · Zbl 0898.13009 · doi:10.1006/jabr.1997.7060
[9] \beginbarticle \bauthor\binitsS. P. \bsnmDutta, \batitleIntersection multiplicity of modules in the positive characteristics, \bjtitleJ. Algebra \bvolume280 (\byear2004), page 394-\blpage411. \endbarticle \endbibitem · Zbl 1095.13028 · doi:10.1016/j.jalgebra.2004.04.009
[10] \beginbarticle \bauthor\binitsC. \bsnmHan and \bauthor\binitsP. \bsnmMonsky, \batitleSome surprising Hilbert-Kunz functions, \bjtitleMath. Z. \bvolume214 (\byear1993), page 119-\blpage135. \endbarticle \endbibitem · Zbl 0788.13008 · doi:10.1007/BF02572395
[11] \beginbarticle \bauthor\binitsC. \bsnmHuneke, \bauthor\binitsM. , \bauthor\binitsS. \bsnmTakagi and \bauthor\binitsK.-i. \bsnmWatanabe, \batitle\(F\)-thresholds, tight closure, integral closure, and multiplicity bounds, \bjtitleMichigan Math. J. \bvolume57 (\byear2008), page 463-\blpage483. \endbarticle \endbibitem · doi:10.1307/mmj/1220879419
[12] \beginbarticle \bauthor\binitsC. \bsnmHuneke, \bauthor\binitsS. \bsnmTakagi and \bauthor\binitsK.-i. \bsnmWatanabe, \batitleMultiplicity bounds in graded rings, \bjtitleKyoto J. Math. \bvolume51 (\byear2011), no. \bissue1, page 127-\blpage147. \endbarticle \endbibitem · Zbl 1219.13002 · doi:10.1215/0023608X-2010-022
[13] \beginbotherref \oauthor\binitsA. \bsnmKaid, On semistable and strongly semistable syzygy bundles , Ph.D. thesis, University of Sheffield, 2009. \endbotherref \endbibitem
[14] \beginbarticle \bauthor\binitsA. \bsnmKustin and \bauthor\binitsA. \bsnmVraciu, \batitleSocle degrees of Frobenius powers, \bjtitleIllinois J. Math. \bvolume51 (\byear2007), page 185-\blpage208. \endbarticle \endbibitem
[15] \beginbotherref \oauthor\binitsA. \bsnmKustin, \oauthor\binitsH. \bsnmRahmati and \oauthor\binitsA. \bsnmVraciu, The resolution of the bracket powers of the maximal ideal in a diagonal hypersurface ring , J. Algebra 369 (2012), 256-321. \endbotherref \endbibitem · Zbl 1275.13003 · doi:10.1016/j.jalgebra.2012.07.011
[16] \beginbarticle \bauthor\binitsA. \bsnmLanger, \batitleSemistable sheaves in positive characteristic, \bjtitleAnn. of Math. (2) \bvolume159 (\byear2004), page 251-\blpage276. \endbarticle \endbibitem · Zbl 1080.14014 · doi:10.4007/annals.2004.159.251
[17] \beginbarticle \bauthor\binitsJ. \bsnmLi, \batitleThe upper bound of Frobenius related length functions, \bjtitleJ. Algebra \bvolume285 (\byear2005), page 856-\blpage867. \endbarticle \endbibitem · Zbl 1091.13015 · doi:10.1016/j.jalgebra.2004.11.015
[18] \beginbarticle \bauthor\binitsP. \bsnmMonsky, \batitleThe Hilbert-Kunz function, \bjtitleMath. Ann. \bvolume263 (\byear1983), page 43-\blpage49. \endbarticle \endbibitem · Zbl 0509.13023 · doi:10.1007/BF01457082
[19] \beginbarticle \bauthor\binitsP. \bsnmMonsky, \batitleThe Hilbert-Kunz multiplicity of an irreducible trinomial, \bjtitleJ. Algebra \bvolume304 (\byear2006), page 1101-\blpage1107. \endbarticle \endbibitem · Zbl 1106.13017 · doi:10.1016/j.jalgebra.2005.12.028
[20] \beginbarticle \bauthor\binitsP. \bsnmMonsky, \batitleMason’s theorem and syzygy gaps, \bjtitleJ. Algebra \bvolume303 (\byear2006), page 373-\blpage381. \endbarticle \endbibitem · Zbl 1106.13013 · doi:10.1016/j.jalgebra.2005.10.012
[21] \beginbchapter \bauthor\binitsM. , \bauthor\binitsS. \bsnmTakagi and \bauthor\binitsK.-i. \bsnmWatanabe, \bctitleF-thresholds and Bernstein-Sato polynomials, \bbtitleProceedings of the fourth European congress of mathematics, \bpublisherEur. Math. Soc., , \byear2005, pp. page 341-\blpage364. \endbchapter \endbibitem
[22] \beginbarticle \bauthor\binitsC. \bsnmPeskine and \bauthor\binitsL. \bsnmSzpiro, \batitleDimension projective finie et cohomologic locale, \bjtitlePubl. Math. Inst. Hautes Etudes Sci. \bvolume42 (\byear1973), page 47-\blpage119. \endbarticle \endbibitem · Zbl 0268.13008 · doi:10.1007/BF02685877
[23] \beginbarticle \bauthor\binitsC. A. \bsnmYackel, \batitleBounds on annihilator lengths in families of quotients of Noetherian rings, \bjtitleJ. Algebra \bvolume228 (\byear2000), page 763-\blpage792. \endbarticle \endbibitem · Zbl 1080.13505 · doi:10.1006/jabr.2000.8317
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.