×

Weak solutions for a \(p\)-Laplacian impulsive differential equation. (English) Zbl 1304.34053

Summary: By the virtue of variational method and critical point theory, we give some existence results of weak solutions for a \(p\)-Laplacian impulsive differential equation with Dirichlet boundary conditions.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
47J30 Variational methods involving nonlinear operators

References:

[1] Chen, P.; Tang, X., Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems, Applied Mathematics and Computation, 218, 24, 11775-11789 (2012) · Zbl 1282.34035 · doi:10.1016/j.amc.2012.05.027
[2] Chen, P.; Tang, X. H., Existence of solutions for a class of \(p\)-Laplacian systems with impulsive effects, Taiwanese Journal of Mathematics, 16, 3, 803-828 (2012) · Zbl 1251.34044
[3] Sun, J.; Chen, H.; Nieto, J. J., Infinitely many solutions for second-order Hamiltonian system with impulsive effects, Mathematical and Computer Modelling, 54, 1-2, 544-555 (2011) · Zbl 1225.37070 · doi:10.1016/j.mcm.2011.02.044
[4] Sun, J.; Chen, H., Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems, Nonlinear Analysis: Real World Applications, 11, 5, 4062-4071 (2010) · Zbl 1208.34031 · doi:10.1016/j.nonrwa.2010.03.012
[5] Bai, L.; Dai, B.; Li, F., Solvability of second-order Hamiltonian systems with impulses via variational method, Applied Mathematics and Computation, 219, 14, 7542-7555 (2013) · Zbl 1293.34044 · doi:10.1016/j.amc.2013.01.041
[6] Zhou, J.; Li, Y., Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Analysis: Theory, Methods & Applications, 72, 3-4, 1594-1603 (2010) · Zbl 1193.34057 · doi:10.1016/j.na.2009.08.041
[7] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Analysis: Real World Applications, 10, 2, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[8] Bogun, I., Existence of weak solutions for impulsive \(p\)-Laplacian problem with superlinear impulses, Nonlinear Analysis: Real World Applications, 13, 6, 2701-2707 (2012) · Zbl 1266.34025 · doi:10.1016/j.nonrwa.2012.03.014
[9] Xu, J.; Wei, Z.; Ding, Y., Existence of weak solutions for \(p\)-Laplacian problem with impulsive effects, Taiwanese Journal of Mathematics, 17, 2, 501-515 (2013) · Zbl 1290.34039
[10] Zhang, K.; Xu, J.; Dong, W., Weak solutions for a \(p\)-Laplacian anti-periodic boundary value problem with impulsive effects. Discrete Dynamics in Nature and Societywith impulsive effects, Discrete Dynamics in Nature and Society, 2013 (2013) · Zbl 1417.34066 · doi:10.1155/2013/786548
[11] Bai, L.; Dai, B., Three solutions for a \(p\)-Laplacian boundary value problem with impulsive effects, Applied Mathematics and Computation, 217, 24, 9895-9904 (2011) · Zbl 1226.34029 · doi:10.1016/j.amc.2011.03.097
[12] Zou, W., Variant fountain theorems and their applications, Manuscripta Mathematica, 104, 3, 343-358 (2001) · Zbl 0976.35026 · doi:10.1007/s002290170032
[13] del Pino, M.; Elgueta, M.; Manásevich, R., A homotopic deformation along \(p\) of a Leray-Schauder degree result and existence for \((| u' |^{p - 2} u')' + f(t, u) = 0, u(0) = u(T) = 0, p > 1\), Journal of Differential Equations, 80, 1, 1-13 (1989) · Zbl 0708.34019 · doi:10.1016/0022-0396(89)90093-4
[14] Eberhard, W.; Elbert, Á., Half-linear eigenvalue problems, Mathematische Nachrichten, 183, 55-72 (1997) · Zbl 0874.34025 · doi:10.1002/mana.19971830105
[15] Kusano, T.; Naito, M., Sturm-Liouville eigenvalue problems from half-linear ordinary differential equations, The Rocky Mountain Journal of Mathematics, 31, 3, 1039-1054 (2001) · Zbl 1006.34025 · doi:10.1216/rmjm/1020171678
[16] Candela, A. M.; Palmieri, G., Infinitely many solutions of some nonlinear variational equations, Calculus of Variations and Partial Differential Equations, 34, 4, 495-530 (2009) · Zbl 1160.49007 · doi:10.1007/s00526-008-0193-2
[17] Mawhin, J., Problèmes de Dirichlet Variationnels non Linéaires (1987), Montréal, Canada: Les Presses de l’Universitè de Montrèal, Montréal, Canada · Zbl 0644.49001
[18] Lu, W., Variational Methods in Differential Equations (2002), Beijing, China: Scientific Publishing House, Beijing, China
[19] Willem, M., Minimax Theorems (1996), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[20] Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1284.49004
[21] Drábek, P.; Milota, J., Methods of Nonlinear Analysis, Applications to Differential Equations (2007), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1176.35002
[22] Rabinowitz, P. H., Minimax Methods in Critical Point theory with Applications to Differential Equations. Minimax Methods in Critical Point theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65 (1986), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0609.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.