×

Analysis of stochastic delay predator-prey system with impulsive toxicant input in polluted environments. (English) Zbl 1304.34140

Summary: A stochastic delay predator-prey model in a polluted environment with impulsive toxicant input is proposed and studied. The thresholds between stability in time average and extinction of each population are obtained. Some recent results are extended and improved greatly. Several simulation figures are introduced to support the conclusions.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K50 Stochastic functional-differential equations
34K45 Functional-differential equations with impulses
92D25 Population dynamics (general)
92D40 Ecology
34K25 Asymptotic theory of functional-differential equations

References:

[1] Hallam, T. G.; Clark, C. E.; Lassiter, R. R., Effects of toxicants on populations: a qualitative approach—1. Equilibrium environmental exposure, Ecological Modelling, 18, 4, 291-304 (1983) · Zbl 0548.92018
[2] Hallam, T. G.; Clark, C. E.; Jordan, G. S., Effects of toxicants on populations: a qualitative approach—2. First order kinetics, Journal of Mathematical Biology, 18, 1, 25-37 (1983) · Zbl 0548.92019
[3] Hallam, T. G.; De Luna, J. T., Effects of toxicants on populations: a qualitative approach—3. Environmental and food chain pathways, Journal of Theoretical Biology, 109, 3, 411-429 (1984)
[4] Ma, Z. E.; Cui, G. R.; Wang, W. D., Persistence and extinction of a population in a polluted environment, Mathematical Biosciences, 101, 1, 75-97 (1990) · Zbl 0714.92027 · doi:10.1016/0025-5564(90)90103-6
[5] Freedman, H. I.; Shukla, J. B., Models for the effect of toxicant in single-species and predator-prey systems, Journal of Mathematical Biology, 30, 1, 15-30 (1991) · Zbl 0825.92125 · doi:10.1007/BF00168004
[6] Huaping, L.; Zhien, M., The threshold of survival for system of two species in a polluted environment, Journal of Mathematical Biology, 30, 1, 49-61 (1991) · Zbl 0745.92028 · doi:10.1007/BF00168006
[7] Zhien, M.; Wengang, Z.; Zhixue, L., The thresholds of survival for an \(n\)-food chain model in a polluted environment, Journal of Mathematical Analysis and Applications, 210, 2, 440-458 (1997) · Zbl 0905.92030 · doi:10.1006/jmaa.1997.5387
[8] Buonomo, B.; Di Liddo, A.; Sgura, I., A diffusive-convective model for the dynamics of population-toxicant interactions: some analytical and numerical results, Mathematical Biosciences, 157, 1-2, 37-64 (1999) · doi:10.1016/S0025-5564(98)10076-7
[9] Jinxiao, P.; Zhen, J.; Zhien, M., Thresholds of survival for an \(n\)-dimensional Volterra mutualistic system in a polluted environment, Journal of Mathematical Analysis and Applications, 252, 2, 519-531 (2000) · Zbl 0965.92030 · doi:10.1006/jmaa.2000.6853
[10] Li, Z.; Shuai, Z.; Wang, K., Persistence and extinction of single population in a polluted environment, Electronic Journal of Differential Equations, 2004, 108, 1C5 (2004) · Zbl 1084.92032
[11] He, J.; Wang, K., The survival analysis for a population in a polluted environment, Nonlinear Analysis. Real World Applications, 10, 3, 1555-1571 (2009) · Zbl 1160.92041 · doi:10.1016/j.nonrwa.2008.01.027
[12] Sinha, S.; Misra, O. P.; Dhar, J., Modelling a predator-prey system with infected prey in polluted environment, Applied Mathematical Modelling, 34, 7, 1861-1872 (2010) · Zbl 1193.34071 · doi:10.1016/j.apm.2009.10.003
[13] Liu, B.; Chen, L.; Zhang, Y., The effects of impulsive toxicant input on a population in a polluted environment, Journal of Biological Systems, 11, 3, 265-274 (2003) · Zbl 1041.92044 · doi:10.1142/S0218339003000907
[14] Liu, B.; Teng, Z.; Chen, L., The effects of impulsive toxicant input on two-species Lotka-Volterra competition system, International Journal of Information & Systems Sciences, 1, 2, 208-220 (2005) · Zbl 1097.34040
[15] Yang, X.; Jin, Z.; Xue, Y., Weak average persistence and extinction of a predator-prey system in a polluted environment with impulsive toxicant input, Chaos, Solitons & Fractals, 31, 3, 726-735 (2007) · Zbl 1133.92032 · doi:10.1016/j.chaos.2005.10.042
[16] Tao, F.; Liu, B., Dynamic behaviors of a single-species population model with birth pulses in a polluted environment, The Rocky Mountain Journal of Mathematics, 38, 5, 1663-1684 (2008) · Zbl 1178.34051 · doi:10.1216/RMJ-2008-38-5-1663
[17] Liu, B.; Zhang, L., Dynamics of a two-species Lotka-Volterra competition system in a polluted environment with pulse toxicant input, Applied Mathematics and Computation, 214, 1, 155-162 (2009) · Zbl 1172.92036 · doi:10.1016/j.amc.2009.03.065
[18] Cai, S., A stage-structured single species model with pulse input in a polluted environment, Nonlinear Dynamics, 57, 3, 375-382 (2009) · Zbl 1176.92051 · doi:10.1007/s11071-008-9448-x
[19] Jiao, J.; Chen, L., Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment, Journal of Mathematical Chemistry, 46, 2, 502-513 (2009) · Zbl 1196.92041 · doi:10.1007/s10910-008-9474-4
[20] Jiao, J.; Long, W.; Chen, L., A single stage-structured population model with mature individuals in a polluted environment and pulse input of environmental toxin, Nonlinear Analysis. Real World Applications, 10, 5, 3073-3081 (2009) · Zbl 1162.92330 · doi:10.1016/j.nonrwa.2008.10.007
[21] Meng, X.; Li, Z.; Nieto, J. J., Dynamic analysis of Michaelis-Menten chemostat-type competition models with time delay and pulse in a polluted environment, Journal of Mathematical Chemistry, 47, 1, 123-144 (2010) · Zbl 1194.92075 · doi:10.1007/s10910-009-9536-2
[22] Jiao, J.; Ye, K.; Chen, L., Dynamical analysis of a five-dimensioned chemostat model with impulsive diffusion and pulse input environmental toxicant, Chaos, Solitons & Fractals, 44, 1-3, 17-27 (2011) · Zbl 1216.92062 · doi:10.1016/j.chaos.2010.11.001
[23] Jiao, J.; Cai, S.; Chen, L., Dynamics of the genic mutational rate on a population system with birth pulse and impulsive input toxins in polluted environment, Journal of Applied Mathematics and Computing, 40, 1-2, 445-457 (2012) · Zbl 1302.34070 · doi:10.1007/s12190-012-0577-5
[24] Johnston, E. L.; Keough, M. J., Field assessment of effects of timing and frequency of copper pulses on settlement of sessile marine invertebrates, Marine Biology, 137, 5-6, 1017-1029 (2000) · doi:10.1007/s002270000420
[25] May, R. M., Stability and Complexity in Model Ecosystems (2001), Princeton University Press · Zbl 1044.92047
[26] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, xii+398 (1993), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0777.34002
[27] Beddington, J. R.; May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science, 197, 4302, 463-465 (1977)
[28] Rudnicki, R.; Pichór, K., Influence of stochastic perturbation on prey-predator systems, Mathematical Biosciences, 206, 1, 108-119 (2007) · Zbl 1124.92055 · doi:10.1016/j.mbs.2006.03.006
[29] Hung, L.-C., Stochastic delay population systems, Applicable Analysis, 88, 9, 1303-1320 (2009) · Zbl 1216.60051 · doi:10.1080/00036810903277093
[30] Zhu, C.; Yin, G., On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Analysis. Theory, Methods & Applications, 71, 12, e1370-e1379 (2009) · Zbl 1238.34059 · doi:10.1016/j.na.2009.01.166
[31] Liu, M.; Wang, K., Persistence and extinction in stochastic non-autonomous logistic systems, Journal of Mathematical Analysis and Applications, 375, 2, 443-457 (2011) · Zbl 1214.34045 · doi:10.1016/j.jmaa.2010.09.058
[32] Liu, M.; Wang, K., Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system, Applied Mathematics Letters, 25, 11, 1980-1985 (2012) · Zbl 1261.60057
[33] Liu, M.; Wang, K.; Wu, Q., Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bulletin of Mathematical Biology, 73, 9, 1969-2012 (2011) · Zbl 1225.92059 · doi:10.1007/s11538-010-9569-5
[34] Liu, M.; Wang, K., Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input, Chaos Solitons Fractals, 45, 1541-1550 (2012)
[35] Liu, M.; Qiu, H.; Wang, K., A remark on a stochastic predator-prey system with time delays, Applied Mathematics Letters, 26, 3, 318-323 (2013) · Zbl 1383.92069 · doi:10.1016/j.aml.2012.08.015
[36] Liu, M.; Wang, K., Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete and Continuous Dynamical Systems A, 33, 6, 2495-2522 (2013) · Zbl 1402.92351 · doi:10.3934/dcds.2013.33.2495
[37] Liu, M.; Wang, K., Dynamics of a Leslie-Gower Holling-type II predator-prey system with Lévy jumps, Nonlinear Analysis. Theory, Methods & Applications, 85, 204-213 (2013) · Zbl 1285.34047 · doi:10.1016/j.na.2013.02.018
[38] Liu, M.; Wang, K., Analysis of a stochastic autonomous mutualism model, Journal of Mathematical Analysis and Applications, 402, 1, 392-403 (2013) · Zbl 1417.92141 · doi:10.1016/j.jmaa.2012.11.043
[39] Liu, M.; Wang, K., Stochastic Lotka—Volterra systems with Lévy noise, Journal of Mathematical Analysis and Applications, 410, 750-763 (2014) · Zbl 1327.92046
[40] Ikeda, N.; Watanabe, S., A comparison theorem for solutions of stochastic differential equations and its applications, Osaka Journal of Mathematics, 14, 3, 619-633 (1977) · Zbl 0376.60065
[41] Kloeden, P. E.; Shardlow, T., The Milstein scheme for stochastic delay differential equations without using anticipative calculus, Stochastic Analysis and Applications, 30, 2, 181-202 (2012) · Zbl 1247.65005 · doi:10.1080/07362994.2012.628907
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.