×

Deterministic homogenization of nonlinear degenerate elliptic operators with nonstandard growth. (English) Zbl 1304.35067

The author uses the properties of the \(\Sigma\)-convergence to extend the application of the passage to the (deterministic) homogenisation limit to a class of nonlinear degenerate elliptic operators with nonstandard growth. The natural functional setting used here is that one offered by the Orlicz-Sobolev spaces.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J70 Degenerate elliptic equations
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R. A.: Sobolev Spaces, Academic Press Inc., New York, 1975 · Zbl 0314.46030
[2] Adams, R. A.: On the Orlicz-Sobolev imbedding theorem. J. Funct. Anal., 24, 241-257 (1977) · Zbl 0344.46077 · doi:10.1016/0022-1236(77)90055-6
[3] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal., 23, 1482-1518 (1992) · Zbl 0770.35005 · doi:10.1137/0523084
[4] Amaziane, B., Antontsev, S., Pankratov, L.: Homogenization of a class of nonlinear elliptic equations with nonstandard growth. Comptes Rendus Mécanique, 335, 138-143 (2007) · Zbl 1116.35009 · doi:10.1016/j.crme.2007.02.007
[5] Amaziane, B., Antontsev, S., Pankratov, L., et al.: Γ-convergence and homogenization of functionals on Sobolev spaces with variable exponents. J. Math. Anal. Appl., 342, 1192-1202 (2008) · Zbl 1357.49052 · doi:10.1016/j.jmaa.2007.12.035
[6] Amaziane, B., Antontsev, S., Pankratov, L., et al.: Homogenization of p-Laplacian in perforated domain. Ann. I. H. Poincaré-AN, 26, 2457-2479 (2009) · Zbl 1182.35017 · doi:10.1016/j.anihpc.2009.06.004
[7] Antontsev, S. N., Díaz, J. L., de Oliveira, H. B.: Stopping a viscous fluid by a feedback dissipative field: Thermal effects without phase changing. Progr. Nonlinear Diff. Equ. Appl., 61, 1-14 (2005) · Zbl 1082.35117
[8] Benkirane, A., Gossez, J. P.: An approximation theorem in higher order Orlicz-Sobolev spaces and applications. Studia Math. T., XCH, 231-255 (1989) · Zbl 0684.46030
[9] Benkirane, A., Emahi, A.: Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and applications. Nonlinear Analysis, 28, 1769-1784 (1997) · Zbl 0872.35033 · doi:10.1016/S0362-546X(96)00017-X
[10] Bensoussan, A., Lions, J. L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978 · Zbl 0404.35001
[11] Besicovitch, A. S.: Almost Periodic Functions, Dover Publications, Inc. Cambridge, 1954 · Zbl 0004.25303
[12] Bourbaki, N.: Intégration, Chap. 1-4, Hermann, Paris, 1966 · Zbl 0141.00602
[13] Bourbaki, N.: Intégration, Chap. V, Hermann, Paris, 1967
[14] Bourbaki, N.: Topologie Générale, Chap. I-IV, Hermann, Paris, 1971 · Zbl 0249.54001
[15] Bourbaki, N.: Topologie Générale, Chap. V-X, Hermann, Paris, 1974
[16] Casado-Diaz, J., Gayte, I.: A derivation theory for generalized Besicovitch spaces and its application for partial differential equations. Proc. R. Soc. Edinb. A, 132, 283-315 (2002) · Zbl 1028.35012 · doi:10.1017/S0308210500001633
[17] Casado-Diaz, J., Gayte, I.: The two-scale convergence method applied to generalized Besicovitch spaces. Proc. R. Soc. Edinb. A, 132, 2925-2946 (2002) · Zbl 1099.35010 · doi:10.1098/rspa.2002.1003
[18] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[19] Clément, P., de Pagter, B., Sweers, G., et al.: Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces. Mediterr. J. Math., 1, 241-267 (2004) · Zbl 1167.35352 · doi:10.1007/s00009-004-0014-6
[20] Conca, C.: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl., 64, 31-75 (1985) · Zbl 0566.35080
[21] Edwards, R. E.: Functional Analysis, Dover Publications Inc, Holt-Rinehart-Winston, 1965 · Zbl 0182.16101
[22] Focardi, M., Mascolo, E.: Lower semicontinuity of quasi-convex functionals with non-standard growth. J. Convex Anal., 8, 327-348 (2001) · Zbl 1005.49009
[23] Fotso Tachago, J., Nnang, H.: Two-scale convergence of integral functionals with convex, periodic and nonstandard growth integrands. Acta Appl. Math., 121, 175-196 (2012) · Zbl 1258.35018 · doi:10.1007/s10440-012-9702-6
[24] Fournier, J. J. F., Stewart, J.: Amalgams of Lp and ℓq. Bull. Amer. Math. Soc., 13, 1-21 (1985) · Zbl 0593.43005 · doi:10.1090/S0273-0979-1985-15350-9
[25] Gossez, J. P.: Some approximation properties in Orlicz-Sobolev spaces. Studia Math., 74, 17-24 (1982) · Zbl 0503.46018
[26] Guichardet, A.: Analyse Harmonique Commutative, Dunod, Paris, 1968 · Zbl 0159.18601
[27] Hajlasz, P., Liu, Z.: A compact embedding of a Sobolev space is equivalent to an embedding into a better space. Proc. Amer. Soc., 138, 3257-3266 (2010) · Zbl 1203.46020 · doi:10.1090/S0002-9939-10-10390-6
[28] Jikov, V. V., Kozlov, S. M., Oleinik, O. A.: Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994 · Zbl 0801.35001 · doi:10.1007/978-3-642-84659-5
[29] Khruslov, E. Y., Pankratov, L.: Homogenization of the Dirichlet variational problems in Orlicz-Sobolev. Fields Inst. Comm., 25, 345-366 (2000) · Zbl 0961.49010
[30] Kozlov, S.: Averaging of differential operators with almost periodic rapidly oscillating coefficients. Math. USSR Sbornik, 35, 481-498 (1979) · Zbl 0422.35003 · doi:10.1070/SM1979v035n04ABEH001561
[31] Kufner, A., John, O., Fučik, S.: Function Spaces, Nordhoff, Leyden, 1977 · Zbl 0364.46022
[32] Marchenko, V. A., Khruslov, E. Y.: Boundary value problems with fine-grained boundary. Mat. Sb., 65, 458-472 (1964)
[33] Mihăilescu, M., Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. Ann. Inst. Fourier, 56, 2087-2111 (2008) · Zbl 1186.35065 · doi:10.5802/aif.2407
[34] Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983 · Zbl 0557.46020
[35] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal., 20, 608-623 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[36] Nguetseng, G.: Almost periodic homogenization: asymptotic analysis of a second order elliptic equation, preprint, 2000
[37] Nguetseng, G.: Homogenization structures and applications I. Z. Anal. Andwend., 22, 203-221 (2003) · Zbl 1045.46031
[38] Nguetseng, G.: Homogenization structures and applications II. Z. Anal. Andwend., 23, 483-508 (2004) · Zbl 1116.46064 · doi:10.4171/ZAA/1208
[39] Nguetseng, G., Nnang, H.: Homogenization of nonlinear monotone operators beyond the periodic setting. Electron. J. Diff. Equ., 2003, 1-24 (2003) · Zbl 1032.35031
[40] Nguetseng, G., Nnang, H., Woukeng, J. L.: Deterministic homogenization of integral functionals with convex integrangs. Nonlinear Differ. Equ. Appl., 17, 757-781 (2010) · Zbl 1207.35046 · doi:10.1007/s00030-010-0080-3
[41] Nguetseng, G., Sango, M., Woukeng, J. L.: Reiterated ergodic algebras and applications. Commun. Math. Phys., 300, 835-876 (2010) · Zbl 1228.46049 · doi:10.1007/s00220-010-1127-3
[42] Nguetseng, G., Svanstedt, N.: Σ-convergence. Banach J. Math. Anal., 5, 101-135 (2011) · Zbl 1229.46035 · doi:10.15352/bjma/1313362985
[43] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients. Electron. J. Diff. Equ., 2004, 1-23 (2004) · Zbl 1058.35025
[44] Nnang, H.: Homogénéisation Déterministe D’operateurs Monotones, Fac. Sc. University of Yaounde 1, Yaounde, 2004
[45] Nnang, H.: Deterministic homogenization of weakly damped nonlinear hyperbolic-parabolic equations. Nonlinear Differ. Equ. Appl., 19, 539-574 (2012) · Zbl 1257.35032 · doi:10.1007/s00030-011-0142-1
[46] Rajagopal, K., Rúžićka, M.: Mathematical modeling of electro-rheological fluids. Contin. Mech. Thermodyn., 13, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[47] Rúžićka, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Vol. 1748, Springer, Berlin, 2000 · Zbl 0968.76531
[48] Woukeng, J. L.: Homogenization of nonlinear degenerate non-monotone elliptic operators in domains perforated with tiny holes. Acta Appl. Math., 112, 35-68 (2010) · Zbl 1203.35028 · doi:10.1007/s10440-009-9552-z
[49] Youssfi, A.: Existence of bounded solutions for nonlinear degenerate elliptic equations in Orlicz spaces. Electron. J. Diff. Equ., 2007, 1-13 (2007) · Zbl 1189.35097
[50] Zander, V.: Fubini theorems for Orlicz spaces of Lebesgue-Bochner measurable functions. Proc. Amer. Math. Soc., 32, 102-110 (1972) · Zbl 0256.28006 · doi:10.1090/S0002-9939-1972-0291791-4
[51] Zhikov, V. V.: On some variational problems. Russ. J. Math. Phys., 5, 105-116 (1997) · Zbl 0917.49006
[52] Zhikov, V. V., Krivenko, E. V.: Homogenization of singularly perturbed elliptic operators (English transl.). Math. Notes, 33, 294-300 (1983) · Zbl 0556.35003 · doi:10.1007/BF01157062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.