×

Toric degenerations of integrable systems on Grassmannians and polygon spaces. (English) Zbl 1304.37037

Authors’ abstract: We introduce a completely integrable system on the Grassmannian of \(2\)-planes in an \(n\)-space associated with any triangulation of a polygon with \(n\) sides, and we compute the potential function for its Lagrangian torus fiber. The moment polytopes of this system for different triangulations are related by an integral piecewise-linear transformation, and the corresponding potential functions are related by its geometric lift in the sense of Berenstein and Zelevinsky.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
53D12 Lagrangian submanifolds; Maslov index
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] D. Auroux, Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor , J. Gökova Geom. Topol. GGT 1 (2007), 51-91. · Zbl 1181.53076
[2] D. Auroux, “Special Lagrangian fibrations, wall-crossing, and mirror symmetry” in Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry , Surv. Differ. Geom. 13 , International Press, Somerville, Mass., 2009, 1-47. · Zbl 1184.53085
[3] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties , J. Algebraic Geom. 3 (1994), 493-535. · Zbl 0829.14023
[4] A. Berenstein and A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties , Invent. Math. 143 (2001), 77-128. · Zbl 1061.17006
[5] C.-H. Cho and Y.-G. Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds , Asian J. Math. 10 (2006), 773-814. · Zbl 1130.53055
[6] T. Eguchi, K. Hori, and C.-S. Xiong, Gravitational quantum cohomology , Internat. J. Modern Phys. A 12 (1997), 1743-1782. · Zbl 1072.32500
[7] P. Foth, Moduli spaces of polygons and punctured Riemann spheres , Canad. Math. Bull. 43 (2000), 162-173. · Zbl 1060.14506
[8] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction , AMS/IP Stud. Adv. Math. 46 , Amer. Math. Soc., Providence, 2009. · Zbl 1181.53003
[9] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory on compact toric manifolds, I , Duke Math. J. 151 (2010), 23-174. · Zbl 1190.53078
[10] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Floer theory and mirror symmetry on compact toric manifolds , preprint, [math.SG]. 1009.1648v2 · Zbl 1344.53001
[11] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Toric degeneration and non-displaceable Lagrangian tori in \(S^{2}\times S^{2}\) , preprint, [math.SG]. 1002.1660v1
[12] I. M. Gel’fand and R. D. MacPherson, Geometry in Grassmannians and a generalization of the dilogarithm , Adv. Math. 44 (1982), 279-312. · Zbl 0504.57021
[13] V. Guillemin and S. Sternberg, The Gel’fand-Cetlin system and quantization of the complex flag manifolds , J. Funct. Anal. 52 (1983), 106-128. · Zbl 0522.58021
[14] J.-C. Hausmann and A. Knutson, Polygon spaces and Grassmannians , Enseign. Math. (2) 43 (1997), 173-198. · Zbl 0888.58007
[15] B. Howard, C. Manon, and J. J. Millson, The toric geometry of triangulated polygons in Euclidean space , Canad. J. Math. 63 (2011), 878-937. · Zbl 1230.14067
[16] L. C. Jeffrey, Extended moduli spaces of flat connections on Riemann surfaces , Math. Ann. 298 (1994), 667-692. · Zbl 0794.53017
[17] Y. Kamiyama and T. Yoshida, Symplectic toric space associated to triangle inequalities , Geom. Dedicata 93 (2002), 25-36. · Zbl 1039.53095
[18] M. Kapovich and J. J. Millson, The symplectic geometry of polygons in Euclidean space , J. Differential Geom. 44 (1996), 479-513. · Zbl 0889.58017
[19] A. A. Klyachko, “Spatial polygons and stable configurations of points in the projective line” in Algebraic Geometry and Its Applications (Yaroslavl’, 1992) , Aspects Math. E25 , Vieweg, Braunschweig, 1994, 67-84. · Zbl 0820.51016
[20] B. Kostant, “Orbits, symplectic structures and representation theory” in Proceedings of the U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) , Nippon Hyoronsha, Tokyo, 1966, 71. · Zbl 0141.02701
[21] J. J. Millson and J. A. Poritz, Around polygons in \(\mathbb{R}^{3}\) and \(S^{3}\) , Comm. Math. Phys. 218 (2001), 315-331. · Zbl 1002.53059
[22] T. Nishinou, Y. Nohara, and K. Ueda, Toric degenerations of Gelfand-Cetlin systems and potential functions , Adv. Math. 224 (2010), 648-706. · Zbl 1221.53122
[23] T. Nishinou, Y. Nohara, and K. Ueda, Potential functions via toric degenerations , Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 31-33. · Zbl 1239.53103
[24] W.-D. Ruan, “Lagrangian torus fibration of quintic hypersurfaces, I: Fermat quintic case” in Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, Mass., 1999) , AMS/IP Stud. Adv. Math. 23 , Amer. Math. Soc., Providence, 2001, 297-332. · Zbl 1079.14526
[25] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces, II: Technical results on gradient flow construction , J. Symplectic Geom. 1 (2002), 435-521. · Zbl 1090.14502
[26] J. Rusinko, Equivalence of mirror families constructed from toric degenerations of flag varieties , Transform. Groups 13 (2008), 173-194. · Zbl 1189.14045
[27] D. Speyer and B. Sturmfels, The tropical Grassmannian , Adv. Geom. 4 (2004), 389-411. · Zbl 1065.14071
[28] T. Treloar, The symplectic geometry of polygons in the 3-sphere , Canad. J. Math. 54 (2002), 30-54. · Zbl 1009.53058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.