Vodev, Georgi Resolvent estimates for the magnetic Schrödinger operator. (English) Zbl 1304.47004 Anal. PDE 7, No. 7, 1639-1648 (2014). Summary: We prove optimal high-frequency resolvent estimates for self-adjoint operators of the form \[ G=-\Delta+ib(x)\cdot\nabla+i\nabla\cdot b(x)+V(x) \] on \(L^2(\mathbb{R}^n)\), \(n\geq 3\), where \(b(x)\) and \(V(x)\) are large magnetic and electric potentials, respectively. Cited in 3 Documents MSC: 47A10 Spectrum, resolvent 47B38 Linear operators on function spaces (general) 35J10 Schrödinger operator, Schrödinger equation Keywords:magnetic potential; resolvent estimates PDF BibTeX XML Cite \textit{G. Vodev}, Anal. PDE 7, No. 7, 1639--1648 (2014; Zbl 1304.47004) Full Text: DOI arXiv Euclid OpenURL