Tsukamoto, Masaki Sharp lower bound on the curvatures of ASD connections over the cylinder. (English) Zbl 1304.53018 J. Math. Soc. Japan 66, No. 3, 951-956 (2014). Let \(X =\mathbb{R}\times S^3\) be the cylinder with the product metric and \(\pi:E = X \times \mathrm {SU}_2 \to X\) the trivial \(\mathrm {SU}_2\)-principal bundle. Let \(A\) be an anti-selfdual connection in \(\pi\) and \(F : \Lambda^2(TX) \to \mathfrak{su}_2 \) its curvature. The author defines the norm of \(F\) at a point \(p\) as \[ |F_p|= \sup\{ \sum_{1\leq i<j<4} a_{ij}F(e_i,e_j)_p | a_{ij}\in \mathbb R,\, \sum_{1\leq i<j<4} a_{ij}=1 \} \] where \(e_i\) is an orthonormal basis of \(T_pX\) and the norm \(|F|\) of \(F\) as the supremum of \(|F|_p\) over \(p \in X\). The main result is the following theorem:The minimum of the norms \(|F|\) over all non-flat anti-selfdual connections \(A\) in \(\pi\) is equal to \(\frac{1}{\sqrt{2}}\).It is proven that the \(\mathrm {SU}_2\) instanton \[ A:= \mathrm{Im}(\frac{\bar x dx}{1 + |x|^2}) \] in \(\mathbb{R}^4 =\mathbb{H}\) restricted to \[ \mathbb{R}\times S^3 = \{ (t,u) \} \subset \mathbb{H}^* =\{e^t u ,\, |u|=1 \} \] attains this minimum. Reviewer: Dmitri Alekseevsky (Moscow) Cited in 2 Documents MSC: 53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills) 53B50 Applications of local differential geometry to the sciences Keywords:anti-selfdual connection; norm of curvature for an ASD connection × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B, 59 (1975), 85-87. · doi:10.1016/0370-2693(75)90163-X [2] S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, With the Assistance of M. Furuta and D. Kotschick, Cambridge Tracts in Math., 147 , Cambridge University Press, Cambridge, 2002. · Zbl 0998.53057 [3] S. K. Donaldson and P. B. Kronheimer, The Geometry of Four-Manifolds, Oxford Math. Monogr., Oxford Science Publications, Oxford University Press, New York, 1990. · Zbl 0820.57002 [4] A. Eremenko, Normal holomorphic curves from parabolic regions to projective spaces, Purdue University, 1998, arXiv: · Zbl 0909.30023 · doi:10.1007/BF02819454 [5] D. S. Freed and K. K. Uhlenbeck, Instantons and Four-Manifolds, 2nd ed., Math. Sci. Res. Inst. Publ., 1 , Springer-Verlag, New York, 1991. · Zbl 0559.57001 [6] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, based on the 1981 French original, with appendices by M. Katz, P. Pansu and S. Semmes, translated from the French by Sean Michael Bates, Progr. Math., 152 , Birkhäuser, Boston, 1999. · Zbl 0953.53002 [7] O. Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv., 33 (1959), 196-205. · Zbl 0086.06402 · doi:10.1007/BF02565916 [8] O. Lehto and K. I. Virtanen, On the behaviour of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn. Ser. A. I., no.,240 (1957). · Zbl 0078.06301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.