×

Fuzzy version of Meir-Keeler type contractive condition and existence of fixed point. (English) Zbl 1304.54087

The authors obtain sufficient conditions for the existence of coincidence points and fixed points for two pairs of weakly compatible Meir-Keeler type contractive mappings on a fuzzy metric space.
Reviewer: Ismat Beg (Lahore)

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
54E40 Special maps on metric spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] [1] M. Akkouchi, A Meir Keeler type common fixed point theorems in four mappings, Opuscula Mathematica, 31(1) (2011), 5-14. · Zbl 1234.54050
[2] M. Abbas, I. Altun and D. Gopal, Common fixed point theorems for non compatible mappings in fuzzy metric spaces, Bull. Math. Anal. Appl., 1(2) (2009), 47-56. · Zbl 1175.54048
[3] M. Aamri and D. El Moutawakil, Some new common fixed point theorems under strict con- tractive conditions, J. Math. Anal. Appl., 270 (2002), 181-188. · Zbl 1008.54030
[4] S. S. Bhatia, S. Manro and S. Kumar, Fixed point theorem for weakly compatible maps using E.A. property in fuzzy metric spaces satisfying contractive condition of integral type, Int. J. Contemp. Math. Sciences, 5 (51) (2010), 2523-2528. · Zbl 1284.54051
[5] S. Chauhan, W. Sintunavarat and P. Kumam, Common Fixed point theorems for weakly com- patible mappings in fuzzy metric spaces using (JCLR) property, Applied Mathematics (in press).
[6] Y. J.Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math., 5 (1997), 949-962. · Zbl 0887.54003
[7] Y. J. Cho, H. K. Pathak, S. M. Kang and J. S. Jung, Common fixed points of compatible maps of Type (b) on fuzzy metric spaces, Fuzzy Sets and Systems, 93 (1998), 99-111. · Zbl 0915.54004
[8] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994) 395-399. · Zbl 0843.54014
[9] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, 90 (1997), 365-368. · Zbl 0917.54010
[10] D. Gopal, M. Imdad and C. Vetro, Impact of common property (E.A.) on fixed point theorems in fuzzy metric spaces, Fixed Point Theory and Applications, Volume 2011, Article ID 297360, 14 pages. · Zbl 1214.54034
[11] S. Heilpern, Fuzzy mappings and fixed point theorems, J. Math. Anal. Appl., 83 (1981), 566- 569. · Zbl 0486.54006
[12] M. Imdad and J. Ali, A general fixed point theorem in fuzzy metric spaces via an implicit function, Journal of Applied Mathematics and Informatics, 26 (2008), 591-603.
[13] G. Jungck, Commuting mappings and fixed points, Amer. Math. Mon., 83 (1976), 261-263. · Zbl 0321.54025
[14] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779. · Zbl 0613.54029
[15] I. Kramosil and J. Michalek, Fuzzy metric and statistical spaces, Kybernetica, 11 (1975), 336- 344. · Zbl 0319.54002
[16] S. Manro, A common fixed point Theorem for weakly compatible maps satisfying property (E.A) in fuzzy metric spaces using strict contractive condition, ARPN Journal of Science and Tech- nology, 2(4) (2012), 367-370.
[17] S. Manro, S.S. Bhatia and S. Kumar, Common fixed point theorems in fuzzy metric spaces, Annals of Fuzzy Mathematics and Informatics, 3(1)(2012), 151-158. · Zbl 1301.54020
[18] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326-329. · Zbl 0194.44904
[19] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. (USA), 28 (1942), 535-537. · Zbl 0063.03886
[20] D. ORegan and M. Abbas, Necessary and sufficient conditions for common fixed point theorems in fuzzy metric spaces, Demonstratio Math., 42(4) (2009), 887-900. · Zbl 1190.54034
[21] R. P. Pant and P. C. Joshi, A Meir Keeler type fixed point theorem, Indian Journal of Pure and Applied Mathematics, 32(6) (2001), 779-787. · Zbl 1011.54037
[22] R. P. Pant and V. Pant, Some fixed point theorem in fuzzy metric space, J. Fuzzy Math, 16(3) (2008), 599-611. · Zbl 1155.54310
[23] R. P. Pant, A new common fixed point principle, Soochow Journal of Mathematics, 27(3) (2001), 287-297. · Zbl 0991.54051
[24] V. Pant and K. Jha, (ɛ;δ) contractive condition and common fixed points, Fasciculi Mathe- matici, 42 (2009), 73-84. · Zbl 1182.54054
[25] B. Schweizer and A. Sklar, Probabilistic metric paces, North Holland Amsterdam, 1983. · Zbl 0546.60010
[26] B. Singh and M. S. Chauhan, Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems, 115 (2000), 471-475. · Zbl 0985.54009
[27] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst.Math., 32(46) (1982), 149-153. · Zbl 0523.54030
[28] W. Sintunavarat and P. Kumam, Common fixed points for R-weakly commuting in fuzzy metric spaces, Ann Univ Ferrara, DOI 10.1007/s11565-012-0150-z.article ID 637958. · Zbl 1302.54088
[29] L. A. Zadeh, Fuzzy sets, Infor. and Control., 8 (1965), 338-353. · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.