×

Sojourn measures of Student and Fisher-Snedecor random fields. (English) Zbl 1304.60058

Authors’ abstract: Limit theorems for the volumes of excursion sets of weakly and strongly dependent heavy-tailed random fields are proved. Some generalizations to sojourn measures above moving levels and for cross-correlated scenarios are presented. Special attention is paid to Student and Fisher-Snedecor random fields. Some simulation results are also presented.

MSC:

60G60 Random fields
60G09 Exchangeability for stochastic processes
60G17 Sample path properties

Software:

RandomFields
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Adler, R.J., Samorodnitsky, G. and Taylor, J.E. (2010). Excursion sets of three classes of stable random fields. Adv. in Appl. Probab. 42 293-318. · Zbl 1201.60044 · doi:10.1239/aap/1275055229
[2] Adler, R.J. and Taylor, J.E. (2007). Random Fields and Geometry. Springer Monographs in Mathematics . New York: Springer. · Zbl 1149.60003
[3] Ahmad, O. and Pinoli, J.C. (2013). On the linear combination of the Gaussian and student’s \(t\) random field and the integral geometry of its excursion sets. Statist. Probab. Lett. 83 559-567. · Zbl 1277.60093
[4] Arcones, M.A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242-2274. · Zbl 0839.60024 · doi:10.1214/aop/1176988503
[5] Arcones, M.A. (2000). Distributional limit theorems over a stationary Gaussian sequence of random vectors. Stochastic Process. Appl. 88 135-159. · Zbl 1045.60019 · doi:10.1016/S0304-4149(99)00122-2
[6] Azaïs, J.M. and Wschebor, M. (2009). Level Sets and Extrema of Random Processes and Fields . Hoboken, NJ: Wiley. · Zbl 1168.60002
[7] Bardet, J.M. and Surgailis, D. (2013). Moment bounds and central limit theorems for Gaussian subordinated arrays. J. Multivariate Anal. 114 457-473. · Zbl 1262.60021 · doi:10.1016/j.jmva.2012.08.002
[8] Berman, S.M. (1984). Sojourns of vector Gaussian processes inside and outside spheres. Z. Wahrsch. Verw. Gebiete 66 529-542. · Zbl 0561.60042 · doi:10.1007/BF00531889
[9] Berman, S.M. (1992). Sojourns and Extremes of Stochastic Processes. The Wadsworth & Brooks/Cole Statistics/Probability Series . Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software. · Zbl 0809.60046
[10] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge: Cambridge Univ. Press. · Zbl 0617.26001
[11] Borovkov, K. and McKinlay, S. (2012). The uniform law for sojourn measures of random fields. Statist. Probab. Lett. 82 1745-1749. · Zbl 1251.60044
[12] Braverman, M. (1997). Suprema and sojourn times of Lévy processes with exponential tails. Stochastic Process. Appl. 68 265-283. · Zbl 0915.60050 · doi:10.1016/S0304-4149(97)00031-8
[13] Breuer, P. and Major, P. (1983). Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 425-441. · Zbl 0518.60023 · doi:10.1016/0047-259X(83)90019-2
[14] Bulinski, A., Spodarev, E. and Timmermann, F. (2012). Central limit theorems for the excursion set volumes of weakly dependent random fields. Bernoulli 18 100-118. · Zbl 1239.60017 · doi:10.3150/10-BEJ339
[15] Cao, J. (1999). The size of the connected components of excursion sets of \(\chi^{2}\), \(t\) and \(F\) fields. Adv. in Appl. Probab. 31 579-595. · Zbl 0948.60023 · doi:10.1239/aap/1029955192
[16] Cao, J. and Worsley, K. (1999). The geometry of correlation fields with an application to functional connectivity of the brain. Ann. Appl. Probab. 9 1021-1057. · Zbl 0961.60052 · doi:10.1214/aoap/1029962864
[17] Cook, J.D. (2009). Upper and lower bounds for the normal distribution function. Available at .
[18] Dehling, H. and Taqqu, M.S. (1989). The empirical process of some long-range dependent sequences with an application to \(U\)-statistics. Ann. Statist. 17 1767-1783. · Zbl 0696.60032 · doi:10.1214/aos/1176347394
[19] Dobrushin, R.L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52. · Zbl 0397.60034 · doi:10.1007/BF00535673
[20] Doukhan, P., Lang, G. and Surgailis, D. (2002). Asymptotics of weighted empirical processes of linear fields with long-range dependence. Ann. Inst. Henri Poincaré Probab. Stat. 38 879-896. · Zbl 1016.60059 · doi:10.1016/S0246-0203(02)01139-1
[21] Gradshteyn, I.S. and Ryzhik, I.M. (2007). Table of Integrals , Series , and Products , 7th ed. (A. Jeffrey and D. Zwillinger, eds.). Amsterdam: Elsevier/Academic Press. · Zbl 1208.65001
[22] Hariz, S.B. (2002). Limit theorems for the non-linear functional of stationary Gaussian processes. J. Multivariate Anal. 80 191-216. · Zbl 1016.60021 · doi:10.1006/jmva.2001.1986
[23] Ivanov, A.V. and Leonenko, N.N. (1989). Statistical Analysis of Random Fields. Mathematics and Its Applications ( Soviet Series ) 28 . Dordrecht: Kluwer Academic. · Zbl 0713.62094
[24] Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D. and Savich, I.N. (2013). Limit theorems for weighted non-linear transformations of Gaussian processes with singular spectra. Ann. Probab. 41 1088-1114. · Zbl 1329.60031 · doi:10.1214/12-AOP775
[25] Kratz, M.F. (2006). Level crossings and other level functionals of stationary Gaussian processes. Probab. Surv. 3 230-288. · Zbl 1189.60079 · doi:10.1214/154957806000000087
[26] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics . New York: Springer.
[27] Leonenko, N. (1999). Limit Theorems for Random Fields with Singular Spectrum. Mathematics and Its Applications 465 . Dordrecht: Kluwer Academic. · Zbl 0963.60048
[28] Leonenko, N. and Olenko, A. (2013). Tauberian and Abelian theorems for long-range dependent random fields. Methodol. Comput. Appl. Probab. To appear. Available at . · Zbl 1307.60068 · doi:10.1007/s11009-012-9276-9
[29] Leonenko, N.N. (1987). Limit distributions of the characteristics of exceeding of a level by a Gaussian random field. Math. Notes 41 339-345. · Zbl 0632.60047 · doi:10.1007/BF01137686
[30] Leonenko, N.N. (1988). On the accuracy of the normal approximation of functionals of strongly correlated Gaussian random fields. Math. Notes 43 161-171. · Zbl 0716.60050 · doi:10.1007/BF01152556
[31] Leonenko, N.N. and Olenko, A.Y. (1991). Tauberian and Abelian theorems for the correlation function of a homogeneous isotropic random field. Ukrain. Mat. Zh. 43 1652-1664 (in Russian) (transl. Ukr. Math. J. 43 (1991) 1539-1548). · Zbl 0753.60048 · doi:10.1007/BF01066693
[32] Liu, J. (2012). Tail approximations of integrals of Gaussian random fields. Ann. Probab. 40 1069-1104. · Zbl 1266.60092 · doi:10.1214/10-AOP639
[33] Liu, J. and Xu, G. (2012). Some asymptotic results of Gaussian random fields with varying mean functions and the associated processes. Ann. Statist. 40 262-293. · Zbl 1246.60056 · doi:10.1214/11-AOS960
[34] Maejima, M. (1985). Sojourns of multidimensional Gaussian processes with dependent components. Yokohama Math. J. 33 121-130. · Zbl 0593.60045
[35] Maejima, M. (1986). Some sojourn time problems for \(2\)-dimensional Gaussian processes. J. Multivariate Anal. 18 52-69. · Zbl 0593.60046 · doi:10.1016/0047-259X(86)90058-8
[36] Marinucci, D. (2004). Testing for non-Gaussianity on cosmic microwave background radiation: A review. Statist. Sci. 19 294-307. · Zbl 1100.62636 · doi:10.1214/088342304000000783
[37] Meschenmoser, D. and Shashkin, A. (2011). Functional central limit theorem for the volume of excursion sets generated by associated random fields. Statist. Probab. Lett. 81 642-646. · Zbl 1221.60045 · doi:10.1016/j.spl.2011.02.012
[38] Novikov, D., Schmalzing, J. and Mukhanov, V.F. (2000). On non-Gaussianity in the cosmic microwave background. Astronom. Astrophys. 364 17-25.
[39] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[40] Olenko, A.Y. (2005). A Tauberian theorem for fields with the OR spectrum. I. Teor. Ĭmovīr. Mat. Stat. 73 120-133 (in Ukrainian) (transl. Theory Probab. Math. Statist. 73 (2006) 135-149). · Zbl 1115.60056
[41] Peccati, G. and Taqqu, M.S. (2011). Wiener Chaos : Moments , Cumulants and Diagrams : A Survey With Computer Implementation. Bocconi & Springer Series 1 . Milan: Springer. · Zbl 1231.60003
[42] Schlather, M. (2013). RandomFields: Simulation and analysis of random fields in R. Available at .
[43] Seneta, E. (1976). Regularly Varying Functions. Lecture Notes in Math. 508 . Berlin: Springer. · Zbl 0324.26002 · doi:10.1007/BFb0079658
[44] Taqqu, M.S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287-302. · Zbl 0303.60033 · doi:10.1007/BF00532868
[45] Taqqu, M.S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83. · Zbl 0397.60028 · doi:10.1007/BF00535674
[46] Taqqu, M.S. (1986). Sojourn in an elliptical domain. Stochastic Process. Appl. 21 319-326. · Zbl 0598.60037 · doi:10.1016/0304-4149(86)90103-1
[47] Worsley, K.J. (1994). Local maxima and the expected Euler characteristic of excursion sets of \(\chi ^{2}\), \(F\) and \(t\) fields. Adv. in Appl. Probab. 26 13-42. · Zbl 0797.60042 · doi:10.2307/1427576
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.